126 research outputs found

    Relational Parametricity for Computational Effects

    Get PDF
    According to Strachey, a polymorphic program is parametric if it applies a uniform algorithm independently of the type instantiations at which it is applied. The notion of relational parametricity, introduced by Reynolds, is one possible mathematical formulation of this idea. Relational parametricity provides a powerful tool for establishing data abstraction properties, proving equivalences of datatypes, and establishing equalities of programs. Such properties have been well studied in a pure functional setting. Many programs, however, exhibit computational effects, and are not accounted for by the standard theory of relational parametricity. In this paper, we develop a foundational framework for extending the notion of relational parametricity to programming languages with effects.Comment: 31 pages, appears in Logical Methods in Computer Scienc

    A generic operational metatheory for algebraic effects

    Get PDF
    We provide a syntactic analysis of contextual preorder and equivalence for a polymorphic programming language with effects. Our approach applies uniformly across a range of algebraic effects, and incorporates, as instances: errors, input/output, global state, nondeterminism, probabilistic choice, and combinations thereof. Our approach is to extend Plotkin and Power’s structural operational semantics for algebraic effects (FoSSaCS 2001) with a primitive “basic preorder” on ground type computation trees. The basic preorder is used to derive notions of contextual preorder and equivalence on program terms. Under mild assumptions on this relation, we prove fundamental properties of contextual preorder (hence equivalence) including extensionality properties and a characterisation via applicative contexts, and we provide machinery for reasoning about polymorphism using relational parametricity

    Selective Strictness and Parametricity in Structural Operational Semantics, Inequationally

    Get PDF
    Parametric polymorphism constrains the behavior of pure functional pro-grams in a way that allows the derivation of interesting theorems about them solely from their types, i.e., virtually for free. The formal background of such ‘free theorems’ is well developed for extensions of the Girard-Reynolds polymorphic lambda calculus by algebraic datatypes and general recursion, provided the resulting calculus is endowed with either a purely strict or a purely nonstrict semantics. But modern functional languages like Clean and Haskell, while using nonstrict evaluation by default, also provide means to enforce strict evaluation of subcomputations at will. The resulting selective strictness gives the advanced programmer explicit control over evaluation order, but is not without semantic consequences: it breaks standard parametricity results. This paper develops an operational semantics for a core calculus supporting all the language features emphasized above. Its main achievement is the characterization of observational approximation with respect to this operational semantics via a carefully constructed logical relation. This establishes the formal basis for new parametricity results, as illustrated by several example applications, including the first complete correctness proof for short cut fusion in the presence of selective strictness. The focus on observational approximation, rather than equivalence, allows a finer-grained analysis of computational behavior in the presence of selective strictness than would be possible with observational equivalence alone

    Parametricity for Nested Types and GADTs

    Full text link
    This paper considers parametricity and its consequent free theorems for nested data types. Rather than representing nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including truly nested types. At the level of terms, it supports primitive pattern matching, map functions, and fold combinators for nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate and challenging. In particular, to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and cocontinuity conditions on the functors interpreting them must be appropriately threaded throughout the model construction. We also prove that our model satisfies an appropriate Abstraction Theorem, as well as that it verifies all standard consequences of parametricity in the presence of primitive nested types. We give several concrete examples illustrating how our model can be used to derive useful free theorems, including a short cut fusion transformation, for programs over nested types. Finally, we consider generalizing our results to GADTs, and argue that no extension of our parametric model for nested types can give a functorial interpretation of GADTs in terms of left Kan extensions and still be parametric

    Foundational extensible corecursion: a proof assistant perspective

    Get PDF
    This paper presents a formalized framework for defining corecursive functions safely in a total setting, based on corecursion up-to and relational parametricity. The end product is a general corecursor that allows corecursive (and even recursive) calls under “friendly” operations, including constructors. Friendly corecursive functions can be registered as such, thereby increasing the corecursor’s expressiveness. The metatheory is formalized in the Isabelle proof assistant and forms the core of a prototype tool. The corecursor is derived from first principles, without requiring new axioms or extensions of the logic

    Programs for cheap!

    Get PDF
    Write down the definition of a recursion operator on a piece of paper. Tell me its type, but be careful not to let me see the operator’s definition. I will tell you an optimization theorem that the operator satisfies. As an added bonus, I will also give you a proof of correctness for the optimisation, along with a formal guarantee about its effect on performance. The purpose of this paper is to explain these tricks
    corecore