3,289 research outputs found

    Least mean M -estimate algorithms for robust adaptive filtering in impulse noise

    Get PDF
    This paper proposes two gradient-based adaptive algorithms, called the least mean M-estimate and the transform domain least mean M -estimate (TLMM) algorithms, for robust adaptive filtering in impulse noise. A robust M -estimator is used as the objective function to suppress the adverse effects of impulse noise on the filter weights. They have a computational complexity of order O(N) and can be viewed, respectively, as the generalization of the least mean square and the transform-domain least mean square algorithms. A robust method for estimating the required thresholds in the M -estimator is also given. Simulation results show that the TLMM algorithm, in particular, is more robust and effective than other commonly used algorithms in suppressing the adverse effects of the impulses. © 2000 IEEE.published_or_final_versio

    Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

    Get PDF
    This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms

    Combined state and parameter estimation for Hammerstein systems with time-delay using the Kalman filtering

    Get PDF
    This paper discusses the state and parameter estimation problem for a class of Hammerstein state space systems with time-delay. Both the process noise and the measurement noise are considered in the system. Based on the observable canonical state space form and the key term separation, a pseudo-linear regressive identification model is obtained. For the unknown states in the information vector, the Kalman filter is used to search for the optimal state estimates. A Kalman-filter based least squares iterative and a recursive least squares algorithms are proposed. Extending the information vector to include the latest information terms which are missed for the time-delay, the Kalman-filter based recursive extended least squares algorithm is derived to obtain the estimates of the unknown time-delay, parameters and states. The numerical simulation results are given to illustrate the effectiveness of the proposed algorithms

    An enhanced linear Kalman filter (EnLKF) algorithm for parameter estimation of nonlinear rational models

    Get PDF
    In this study, an enhanced Kalman Filter formulation for linear in the parameters models with inherent correlated errors is proposed to build up a new framework for nonlinear rational model parameter estimation. The mechanism of linear Kalman filter (LKF) with point data processing is adopted to develop a new recursive algorithm. The novelty of the enhanced linear Kalman filter (EnLKF in short and distinguished from extended Kalman filter (EKF)) is that it is not formulated from the routes of extended Kalman Filters (to approximate nonlinear models by linear approximation around operating points through Taylor expansion) and also it includes LKF as its subset while linear models have no correlated errors in regressor terms. No matter linear or nonlinear models in representing a system from measured data, it is very common to have correlated errors between measurement noise and regression terms, the EnLKF provides a general solution for unbiased model parameter estimation without extra cost to convert model structure. The associated convergence is analysed to provide a quantitative indicator for applications and reference for further research. Three simulated examples are selected to bench-test the performance of the algorithm. In addition, the style of conducting numerical simulation studies provides a user-friendly step by step procedure for the readers/users with interest in their ad hoc applications. It should be noted that this approach is fundamentally different from those using linearisation to approximate nonlinear models and then conduct state/parameter estimate

    Guaranteed parameter estimation in nonlinear dynamic systems using improved bounding techniques

    Get PDF
    This paper is concerned with guaranteed parameter estimation in nonlinear dynamic systems in a context of bounded measurement error. The problem consists of finding - or approximating as closely as possible - the set of all possible parameter values such that the predicted outputs match the corresponding measurements within prescribed error bounds. An exhaustive search procedure is applied, whereby the parameter set is successively partitioned into smaller boxes and exclusion tests are performed to eliminate some of these boxes, until a prespecified threshold on the approximation level is met. Exclusion tests rely on the ability to bound the solution set of the dynamic system for a given parameter subset and the tightness of these bounds is therefore paramount. Equally important is the time required to compute the bounds, thereby defining a trade-off. It is the objective of this paper to investigate this trade-off by comparing various bounding techniques based on interval arithmetic, Taylor model arithmetic and ellipsoidal calculus. When applied to a simple case study, ellipsoidal and Taylor model approaches are found to reduce the number of iterations significantly compared to interval analysis, yet the overall computational time is only reduced for tight approximation levels due to the computational overhead. © 2013 EUCA

    A Recursive Least M-Estimate Algorithm for Robust Adaptive Filtering in Impulsive Noise: Fast Algorithm and Convergence Performance Analysis

    Get PDF
    This paper studies the problem of robust adaptive filtering in impulsive noise environment using a recursive least M-estimate algorithm (RLM). The RLM algorithm minimizes a robust M-estimator-based cost function instead of the conventional mean square error function (MSE). Previous work has showed that the RLM algorithm offers improved robustness to impulses over conventional recursive least squares (RLS) algorithm. In this paper, the mean and mean square convergence behaviors of the RLM algorithm under the contaminated Gaussian impulsive noise model is analyzed. A lattice structure-based fast RLM algorithm, called the Huber Prior Error Feedback-Least Squares Lattice (H-PEF-LSL) algorithm1 is derived. It has an order O(N) arithmetic complexity, where N is the length of the adaptive filter, and can be viewed as a fast implementation of the RLM algorithm based on the modified Huber M-estimate function and the conventional PEF-LSL adaptive filtering algorithm. Simulation results show that the transversal RLM and the H-PEF-LSL algorithms have better performance than the conventional RLS and other RLS-like robust adaptive algorithms tested when the desired and input signals are corrupted by impulsive noise. Furthermore, the theoretical and simulation results on the convergence behaviors agree very well with each other.published_or_final_versio

    Adaptive polynomial filters

    Get PDF
    Journal ArticleWhile linear filter are useful in a large number of applications and relatively simple from conceptual and implementational view points. there are many practical situations that require nonlinear processing of the signals involved. This article explains adaptive nonlinear filters equipped with polynomial models of nonlinearity. The polynomial systems considered are those nonlinear systems whose output signals can be related to the input signals through a truncated Volterra series expansion, or a recursive nonlinear difference equation. The Volterra series expansion can model a large class of nonlinear systems and is attractive in filtering applications because the expansion is a linear combination of nonlinear functions of the input signal. The basic ideas behind the development of gradient and recursive least-squares adaptive Volterra filters are first discussed. followed by adaptive algorithms using system models involving recursive nonlinear difference equations. Such systems are attractive because they may be able to approximate many nonlinear systems with great parsimony in the use pf coefficients. Also discussed are current research trends and new results and problem areas associated with these nonlinear filters. A lattice structure for polynomial models is also described

    Least squares-based iterative identification methods for linear-in-parameters systems using the decomposition technique

    Get PDF
    By extending the least squares-based iterative (LSI) method, this paper presents a decomposition-based LSI (D-LSI) algorithm for identifying linear-in-parameters systems and an interval-varying D-LSI algorithm for handling the identification problems of missing-data systems. The basic idea is to apply the hierarchical identification principle to decompose the original system into two fictitious sub-systems and then to derive new iterative algorithms to estimate the parameters of each sub-system. Compared with the LSI algorithm and the interval-varying LSI algorithm, the decomposition-based iterative algorithms have less computational load. The numerical simulation results demonstrate that the proposed algorithms work quite well

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area
    • …
    corecore