2,887 research outputs found

    Recursive Gabor filtering

    Full text link

    Idealized computational models for auditory receptive fields

    Full text link
    This paper presents a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to enable invariance of receptive field responses under natural sound transformations and ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or the combination of a time-causal generalized Gammatone filter over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals.Comment: 55 pages, 22 figures, 3 table

    Analysis, Visualization, and Transformation of Audio Signals Using Dictionary-based Methods

    Get PDF
    date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +0000date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +000

    Sub-band common spatial pattern (SBCSP) for brain-computer interface

    Get PDF
    Brain-computer interface (BCI) is a system to translate humans thoughts into commands. For electroencephalography (EEG) based BCI, motor imagery is considered as one of the most effective ways. Different imagery activities can be classified based on the changes in mu and/or beta rhythms and their spatial distributions. However, the change in these rhythmic patterns varies from one subject to another. This causes an unavoidable time-consuming fine-tuning process in building a BCI for every subject. To address this issue, we propose a new method called sub-band common spatial pattern (SBCSP) to solve the problem. First, we decompose the EEG signals into sub-bands using a filter bank. Subsequently, we apply a discriminative analysis to extract SBCSP features. The SBCSP features are then fed into linear discriminant analyzers (LDA) to obtain scores which reflect the classification capability of each frequency band. Finally, the scores are fused to make decision. We evaluate two fusion methods: recursive band elimination (RBE) and meta-classifier (MC). We assess our approaches on a standard database from BCI Competition III. We also compare our method with two other approaches that address the same issue. The results show that our method outperforms the other two approaches and achieves similar result as compared to the best one in the literature which was obtained by a time-consuming fine-tuning process

    Spectral-spatial classification of hyperspectral images: three tricks and a new supervised learning setting

    Get PDF
    Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. In the presence of only very few labeled pixels, this task becomes challenging. In this paper we address the following two research questions: 1) Can a simple neural network with just a single hidden layer achieve state of the art performance in the presence of few labeled pixels? 2) How is the performance of hyperspectral image classification methods affected when using disjoint train and test sets? We give a positive answer to the first question by using three tricks within a very basic shallow Convolutional Neural Network (CNN) architecture: a tailored loss function, and smooth- and label-based data augmentation. The tailored loss function enforces that neighborhood wavelengths have similar contributions to the features generated during training. A new label-based technique here proposed favors selection of pixels in smaller classes, which is beneficial in the presence of very few labeled pixels and skewed class distributions. To address the second question, we introduce a new sampling procedure to generate disjoint train and test set. Then the train set is used to obtain the CNN model, which is then applied to pixels in the test set to estimate their labels. We assess the efficacy of the simple neural network method on five publicly available hyperspectral images. On these images our method significantly outperforms considered baselines. Notably, with just 1% of labeled pixels per class, on these datasets our method achieves an accuracy that goes from 86.42% (challenging dataset) to 99.52% (easy dataset). Furthermore we show that the simple neural network method improves over other baselines in the new challenging supervised setting. Our analysis substantiates the highly beneficial effect of using the entire image (so train and test data) for constructing a model.Comment: Remote Sensing 201

    An automatized frequency analysis for vine plot detection and delineation in remote sensing

    Get PDF
    La mise à disposition d'un outil automatique pour la détection et la caractérisation des parcelles de vigne est un besoin très important d'un point de vue gestion. Un procédé automatique récursif basé sur l'analyse fréquentielle (utilisation de la Transformée de Fourier et des filtres de Gabor) a été développé pour y répondre. Il permet la détermination des contours de parcelle et une estimation précise de leur inter-rang et de leur orientation. Dans l'optique d'une application à grande échelle, les tests et la validation ont été menés à partir de données standard de télédétection à très haute résolution.. Environ 89% des parcelles sont détectées qui correspondent à plus de 84 % de la surface viticole, et 64% d'entre elles avec des contours corrects. L'orientation des rangs et la largeur d'inter-rang sont obtenus avec une précision de 1 degré et 3,3 cm respectivement. / The availability of an automatic tool for vine plot detection, delineation, and characterization would be very useful for management purposes. An automatic and recursive process using frequency analysis (with Fourier transform and Gabor filters) has been developed to meet this need. This results in the determination of vine plot boundary and accurate estimation of interrow width and row orientation. To foster large-scale applications, tests and validation have been carried out on standard very high spatial resolution remotely sensed data. About 89% of vine plots are detected corresponding to more than 84% of vineyard area, and 64% of them have correct boundaries. Compared with precise on-screen measurements, vine row orientation and interrow width are estimated with an accuracy of 1°and 3.3 cm, respectively
    • …
    corecore