29,031 research outputs found

    Multichannel high resolution NMF for modelling convolutive mixtures of non-stationary signals in the time-frequency domain

    Get PDF
    Several probabilistic models involving latent components have been proposed for modeling time-frequency (TF) representations of audio signals such as spectrograms, notably in the nonnegative matrix factorization (NMF) literature. Among them, the recent high-resolution NMF (HR-NMF) model is able to take both phases and local correlations in each frequency band into account, and its potential has been illustrated in applications such as source separation and audio inpainting. In this paper, HR-NMF is extended to multichannel signals and to convolutive mixtures. The new model can represent a variety of stationary and non-stationary signals, including autoregressive moving average (ARMA) processes and mixtures of damped sinusoids. A fast variational expectation-maximization (EM) algorithm is proposed to estimate the enhanced model. This algorithm is applied to piano signals, and proves capable of accurately modeling reverberation, restoring missing observations, and separating pure tones with close frequencies

    Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields

    Full text link
    We present \emph{telescoping} recursive representations for both continuous and discrete indexed noncausal Gauss-Markov random fields. Our recursions start at the boundary (a hypersurface in Rd\R^d, d1d \ge 1) and telescope inwards. For example, for images, the telescoping representation reduce recursions from d=2d = 2 to d=1d = 1, i.e., to recursions on a single dimension. Under appropriate conditions, the recursions for the random field are linear stochastic differential/difference equations driven by white noise, for which we derive recursive estimation algorithms, that extend standard algorithms, like the Kalman-Bucy filter and the Rauch-Tung-Striebel smoother, to noncausal Markov random fields.Comment: To appear in the Transactions on Information Theor

    Idealized computational models for auditory receptive fields

    Full text link
    This paper presents a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to enable invariance of receptive field responses under natural sound transformations and ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or the combination of a time-causal generalized Gammatone filter over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals.Comment: 55 pages, 22 figures, 3 table

    Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    Full text link
    The scientific objectives of the Lisa Technology Package (LTP) experiment, on board of the LISA Pathfinder mission, demand for an accurate calibration and validation of the data analysis tools in advance of the mission launch. The levels of confidence required on the mission outcomes can be reached only with an intense activity on synthetically generated data. A flexible procedure allowing the generation of cross-correlated stationary noise time series was set-up. Multi-channel time series with the desired cross correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure is the synthesis of a noise coloring multichannel filter through a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a Z-domain fit. The common problem of initial transients in noise time series is solved with a proper initialization of the filter recursive equations. The noise generator performances were tested in a two dimensional case study of the LTP dynamics along the two principal channels of the sensing interferometer.Comment: Accepted for publication in Physical Review D (http://prd.aps.org/

    Time-causal and time-recursive spatio-temporal receptive fields

    Get PDF
    We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, based on a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about (i) parameterizing the intermediate temporal scale levels, (ii) analysing the resulting temporal dynamics, (iii) transferring the theory to a discrete implementation, (iv) computing scale-normalized spatio-temporal derivative expressions for spatio-temporal feature detection and (v) computational modelling of receptive fields in the lateral geniculate nucleus (LGN) and the primary visual cortex (V1) in biological vision. We show that by distributing the intermediate temporal scale levels according to a logarithmic distribution, we obtain much faster temporal response properties (shorter temporal delays) compared to a uniform distribution. Specifically, these kernels converge very rapidly to a limit kernel possessing true self-similar scale-invariant properties over temporal scales, thereby allowing for true scale invariance over variations in the temporal scale, although the underlying temporal scale-space representation is based on a discretized temporal scale parameter. We show how scale-normalized temporal derivatives can be defined for these time-causal scale-space kernels and how the composed theory can be used for computing basic types of scale-normalized spatio-temporal derivative expressions in a computationally efficient manner.Comment: 39 pages, 12 figures, 5 tables in Journal of Mathematical Imaging and Vision, published online Dec 201

    Identification of shallow sea models

    Get PDF
    In this paper we consider a parameter estimation procedure for shallow sea models. The method is formulated as a minimization problem. An adjoint model is used to calculate the gradient of the criterion which is to be minimized. In order to obtain a robust estimation method, the uncertainty of the open boundary conditions can be taken into acoount by allowing random noise inputs to act on the open boundaries. This method avoids the possibility that boundary errors are interpreted by the estimation procedure as parameter fluctuations. We apply the parameter estimation method to identify a shallow sea model of the entire European continental shelf. First, a space-varying bottom friction coefficient is estimated simultaneously with the depth. The second application is the estimation of the parameterization of the wind stress coefficient as a function of the wind velocity. Finally, an uncertain open boundary condition is included. It is shown that in this case the parameter estimation procedure does become more robust and produces more realistic estimates. Furthermore, an estimate of the open boundary conditions is also obtained

    A fully digital model for Kalman filters

    No full text
    The Kalman filter is a mathematical method, whose purpose is to process noisy measurements in order to obtain an estimate of some relevant parameters of a system. It represents a valuable tool in the GNSS area, with some of its main applications related to the computation of the user PVT solution and to the integration of GNSS receivers with INS or other sensors. The Kalman filter is based on a state space representation, that describes the analyzed system as a set of differential equations that establishes the connections between the inputs, the outputs and the state variables of the analyzed system. In the continuous time domain there exists a large class of physical processes with a time evolution well described by means of stochastic differential equations. A typical problem is the need for an equivalent system in the discrete time, due to the discrete nature of the data to be processed. In the literature, it is quite common to solve this problem in the continuous time domain and to approximate the solution using a Taylor series approximation, to obtain an approximate discrete time version of the continuous time problem. By the way, other methods exist, based on the possibility to transform a continuous-time system to a discrete-time system by means of transformations from the Laplace complex plane to the z plane. These methods are widely used in the digital signal processing community, for example, to design digital filters from their analog counterparts. The main advantage of this approach is that it is very easily implemented by applying some mechanical rules. Moreover the nature of the approximation introduced by the Laplace-z transformation is a-priori known and clearly readable in the frequency domain. In the following the classical methods based on the Taylor approximation and on the Laplace-z transformations will be analyzed and compare

    Fast non-recursive extraction of individual harmonics using artificial neural networks

    Get PDF
    A collaborative work between Northumbria University and University of Peradeniya (Sri Lanka). It presents a novel technique based on Artificial Neural Networks for fast extraction of individual harmonic components. The technique was tested on a real-time hardware platform and results obtained showed that it is significantly faster and less computationally complex than other techniques. The paper complements other publications by the author (see paper 1) on the important area of “Power Quality” of electric power networks. It involves the application of advanced techniques in artificial intelligence to solve power systems problems

    Inductive and Coinductive Components of Corecursive Functions in Coq

    Get PDF
    In Constructive Type Theory, recursive and corecursive definitions are subject to syntactic restrictions which guarantee termination for recursive functions and productivity for corecursive functions. However, many terminating and productive functions do not pass the syntactic tests. Bove proposed in her thesis an elegant reformulation of the method of accessibility predicates that widens the range of terminative recursive functions formalisable in Constructive Type Theory. In this paper, we pursue the same goal for productive corecursive functions. Notably, our method of formalisation of coinductive definitions of productive functions in Coq requires not only the use of ad-hoc predicates, but also a systematic algorithm that separates the inductive and coinductive parts of functions.Comment: Dans Coalgebraic Methods in Computer Science (2008
    corecore