101 research outputs found

    The Trispectrum in the Effective Field Theory of Large Scale Structure

    Get PDF
    We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporate vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.Comment: 25+3 pages, 7 figure

    Partially Massless Fields During Inflation

    Get PDF
    The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.Comment: 48 pages, 5 figures. v2: references added, published versio

    Non-Gaussian Covariance of the Matter Power Spectrum in the Effective Field Theory of Large Scale Structure

    Get PDF
    We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in Standard Perturbation Theory (SPT), and using the framework of the effective field theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. We compare the non-Gaussian part of the one-loop covariance computed with both SPT and EFT of LSS to two separate simulations. In one simulation, we find that the one-loop prediction from SPT reproduces the simulation well to ki+kjk_i + k_j \sim 0.25 h/Mpc, while in the other simulation we find a substantial improvement of EFT of LSS (with one free parameter) over SPT, more than doubling the range of kk where the theory accurately reproduces the simulation. The disagreement between these two simulations points to unaccounted for systematics, highlighting the need for improved numerical and analytic understanding of the covariance.Comment: v2 - 10+9 pages, 6 figures; minor changes + data analysis and conclusions updated. Version accepted for publication in PR

    Large scale structure from viscous dark matter

    Full text link
    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale kmk_m for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale kmk_m, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with NN-body simulations up to scales k=0.2h/k=0.2 \, h/Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.Comment: 30 pages, 7 figure

    Higher-order statistics for DSGE models

    Get PDF
    Closed-form expressions for unconditional moments, cumulants and polyspectra of order higher than two are derived for non-Gaussian or nonlinear (pruned) solutions to DSGE models. Apart from the existence of moments and white noise property no distributional assumptions are needed. The accuracy and utility of the formulas for computing skewness and kurtosis are demonstrated by three prominent models: Smets and Wouters (AER, 586-606, 97, 2007) (first-order approximation), An and Schorfheide (Econom. Rev., 113-172, 26, 2007) (second-order approximation) and the neoclassical growth model (third-order approximation). Both the Gaussian as well as Student's t-distribution are considered as the underlying stochastic processes. Lastly, the efficiency gain of including higher-order statistics is demonstrated by the estimation of a RBC model within a Generalized Method of Moments framework

    Non-linear dark energy clustering

    Full text link
    We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10-15 per cent for small scales.Comment: 33 pages, 7 figures. Improved presentation. References added. Matches published version in JCA

    Partially massless fields during inflation

    Get PDF
    The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation
    corecore