2,492 research outputs found

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks

    Full text link
    Quantized Neural Networks (QNNs), which use low bitwidth numbers for representing parameters and performing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs, parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by bitwise operations. However, distributions of parameters in Neural Networks are often imbalanced, such that the uniform quantization determined from extremal values may under utilize available bitwidth. In this paper, we propose a novel quantization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training speed, and is applicable to both Convolutional Neural Networks and Recurrent Neural Networks. Experiments on standard datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is 12.7\%, which is superior to the state-of-the-arts of QNNs

    On the Resilience of RTL NN Accelerators: Fault Characterization and Mitigation

    Get PDF
    Machine Learning (ML) is making a strong resurgence in tune with the massive generation of unstructured data which in turn requires massive computational resources. Due to the inherently compute- and power-intensive structure of Neural Networks (NNs), hardware accelerators emerge as a promising solution. However, with technology node scaling below 10nm, hardware accelerators become more susceptible to faults, which in turn can impact the NN accuracy. In this paper, we study the resilience aspects of Register-Transfer Level (RTL) model of NN accelerators, in particular, fault characterization and mitigation. By following a High-Level Synthesis (HLS) approach, first, we characterize the vulnerability of various components of RTL NN. We observed that the severity of faults depends on both i) application-level specifications, i.e., NN data (inputs, weights, or intermediate), NN layers, and NN activation functions, and ii) architectural-level specifications, i.e., data representation model and the parallelism degree of the underlying accelerator. Second, motivated by characterization results, we present a low-overhead fault mitigation technique that can efficiently correct bit flips, by 47.3% better than state-of-the-art methods.Comment: 8 pages, 6 figure

    Stochastic Configuration Machines: FPGA Implementation

    Full text link
    Neural networks for industrial applications generally have additional constraints such as response speed, memory size and power usage. Randomized learners can address some of these issues. However, hardware solutions can provide better resource reduction whilst maintaining the model's performance. Stochastic configuration networks (SCNs) are a prime choice in industrial applications due to their merits and feasibility for data modelling. Stochastic Configuration Machines (SCMs) extend this to focus on reducing the memory constraints by limiting the randomized weights to a binary value with a scalar for each node and using a mechanism model to improve the learning performance and result interpretability. This paper aims to implement SCM models on a field programmable gate array (FPGA) and introduce binary-coded inputs to the algorithm. Results are reported for two benchmark and two industrial datasets, including SCM with single-layer and deep architectures.Comment: 19 pages, 9 figures, 8 table

    RBNN: Memory-Efficient Reconfigurable Deep Binary Neural Network with IP Protection for Internet of Things

    Full text link
    Though deep neural network models exhibit outstanding performance for various applications, their large model size and extensive floating-point operations render deployment on mobile computing platforms a major challenge, and, in particular, on Internet of Things devices. One appealing solution is model quantization that reduces the model size and uses integer operations commonly supported by microcontrollers . To this end, a 1-bit quantized DNN model or deep binary neural network maximizes the memory efficiency, where each parameter in a BNN model has only 1-bit. In this paper, we propose a reconfigurable BNN (RBNN) to further amplify the memory efficiency for resource-constrained IoT devices. Generally, the RBNN can be reconfigured on demand to achieve any one of M (M>1) distinct tasks with the same parameter set, thus only a single task determines the memory requirements. In other words, the memory utilization is improved by times M. Our extensive experiments corroborate that up to seven commonly used tasks can co-exist (the value of M can be larger). These tasks with a varying number of classes have no or negligible accuracy drop-off on three binarized popular DNN architectures including VGG, ResNet, and ReActNet. The tasks span across different domains, e.g., computer vision and audio domains validated herein, with the prerequisite that the model architecture can serve those cross-domain tasks. To protect the intellectual property of an RBNN model, the reconfiguration can be controlled by both a user key and a device-unique root key generated by the intrinsic hardware fingerprint. By doing so, an RBNN model can only be used per paid user per authorized device, thus benefiting both the user and the model provider

    DenseShift: Towards Accurate and Efficient Low-Bit Power-of-Two Quantization

    Full text link
    Efficiently deploying deep neural networks on low-resource edge devices is challenging due to their ever-increasing resource requirements. To address this issue, researchers have proposed multiplication-free neural networks, such as Power-of-Two quantization, or also known as Shift networks, which aim to reduce memory usage and simplify computation. However, existing low-bit Shift networks are not as accurate as their full-precision counterparts, typically suffering from limited weight range encoding schemes and quantization loss. In this paper, we propose the DenseShift network, which significantly improves the accuracy of Shift networks, achieving competitive performance to full-precision networks for vision and speech applications. In addition, we introduce a method to deploy an efficient DenseShift network using non-quantized floating-point activations, while obtaining 1.6X speed-up over existing methods. To achieve this, we demonstrate that zero-weight values in low-bit Shift networks do not contribute to model capacity and negatively impact inference computation. To address this issue, we propose a zero-free shifting mechanism that simplifies inference and increases model capacity. We further propose a sign-scale decomposition design to enhance training efficiency and a low-variance random initialization strategy to improve the model's transfer learning performance. Our extensive experiments on various computer vision and speech tasks demonstrate that DenseShift outperforms existing low-bit multiplication-free networks and achieves competitive performance compared to full-precision networks. Furthermore, our proposed approach exhibits strong transfer learning performance without a drop in accuracy. Our code was released on GitHub
    • …
    corecore