1,519 research outputs found

    Recursion and Computability over Topological Structures

    Get PDF
    AbstractWe present a definition of recursive multi-valued operations over topological structures (which include structures for the real numbers and other spaces used in analysis). One of the main results states that over a certain class of structures, so-called perfect structures, recursive operations coincide with computable operations, as defined via Turing machines in computable analysis. Moreover, by a Stability Theorem, perfect structures uniquely characterize their own computability theory. We propose a general method to derive perfect structures from recursive metric spaces and we exhibit this method for a number of general hyper and function spaces which play an important role in computable analysis. Finally, we define classes of recursive sets over structures and we show that these notions are generalizations of the classical notions from recursion theory and computable analysis

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    The Rice-Shapiro theorem in Computable Topology

    Full text link
    We provide requirements on effectively enumerable topological spaces which guarantee that the Rice-Shapiro theorem holds for the computable elements of these spaces. We show that the relaxation of these requirements leads to the classes of effectively enumerable topological spaces where the Rice-Shapiro theorem does not hold. We propose two constructions that generate effectively enumerable topological spaces with particular properties from wn--families and computable trees without computable infinite paths. Using them we propose examples that give a flavor of this class

    Exhaustible sets in higher-type computation

    Full text link
    We say that a set is exhaustible if it admits algorithmic universal quantification for continuous predicates in finite time, and searchable if there is an algorithm that, given any continuous predicate, either selects an element for which the predicate holds or else tells there is no example. The Cantor space of infinite sequences of binary digits is known to be searchable. Searchable sets are exhaustible, and we show that the converse also holds for sets of hereditarily total elements in the hierarchy of continuous functionals; moreover, a selection functional can be constructed uniformly from a quantification functional. We prove that searchable sets are closed under intersections with decidable sets, and under the formation of computable images and of finite and countably infinite products. This is related to the fact, established here, that exhaustible sets are topologically compact. We obtain a complete description of exhaustible total sets by developing a computational version of a topological Arzela--Ascoli type characterization of compact subsets of function spaces. We also show that, in the non-empty case, they are precisely the computable images of the Cantor space. The emphasis of this paper is on the theory of exhaustible and searchable sets, but we also briefly sketch applications

    The descriptive theory of represented spaces

    Full text link
    This is a survey on the ongoing development of a descriptive theory of represented spaces, which is intended as an extension of both classical and effective descriptive set theory to deal with both sets and functions between represented spaces. Most material is from work-in-progress, and thus there may be a stronger focus on projects involving the author than an objective survey would merit.Comment: survey of work-in-progres

    Computability of probability measures and Martin-Lof randomness over metric spaces

    Get PDF
    In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any computable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).Comment: 29 page

    Variations on the Theme of Conning in Mathematical Economics

    Get PDF
    The mathematization of economics is almost exclusively in terms of the mathematics of real analysis which, in turn, is founded on set theory (and the axiom of choice) and orthodox mathematical logic. In this paper I try to point out that this kind of mathematization is replete with economic infelicities. The attempt to extract these infelicities is in terms of three main examples: dynamics, policy and rational expectations and learning. The focus is on the role and reliance on standard xed point theorems in orthodox mathematical economics
    • …
    corecore