179 research outputs found

    Working memory and working attention: What could possibly evolve?

    Get PDF
    The concept of “working” memory is traceable back to nineteenth century theorists (Baldwin, 1894; James 1890) but the term itself was not used until the mid-twentieth century (Miller, Galanter & Pribram, 1960). A variety of different explanatory constructs have since evolved which all make use of the working memory label (Miyake & Shah, 1999). This history is briefly reviewed and alternative formulations of working memory (as language-processor, executive attention, and global workspace) are considered as potential mechanisms for cognitive change within and between individuals and between species. A means, derived from the literature on human problem-solving (Newell & Simon, 1972), of tracing memory and computational demands across a single task is described and applied to two specific examples of tool-use by chimpanzees and early hominids. The examples show how specific proposals for necessary and/or sufficient computational and memory requirements can be more rigorously assessed on a task by task basis. General difficulties in connecting cognitive theories (arising from the observed capabilities of individuals deprived of material support) with archaeological data (primarily remnants of material culture) are discussed

    A matter of time: Implicit acquisition of recursive sequence structures

    Get PDF
    A dominant hypothesis in empirical research on the evolution of language is the following: the fundamental difference between animal and human communication systems is captured by the distinction between regular and more complex non-regular grammars. Studies reporting successful artificial grammar learning of nested recursive structures and imaging studies of the same have methodological shortcomings since they typically allow explicit problem solving strategies and this has been shown to account for the learning effect in subsequent behavioral studies. The present study overcomes these shortcomings by using subtle violations of agreement structure in a preference classification task. In contrast to the studies conducted so far, we use an implicit learning paradigm, allowing the time needed for both abstraction processes and consolidation to take place. Our results demonstrate robust implicit learning of recursively embedded structures (context-free grammar) and recursive structures with cross-dependencies (context-sensitive grammar) in an artificial grammar learning task spanning 9 days. Keywords: Implicit artificial grammar learning; centre embedded; cross-dependency; implicit learning; context-sensitive grammar; context-free grammar; regular grammar; non-regular gramma

    Specifically Human: Going Beyond Perceptual Syntax

    No full text
    The aim of this paper is to help refine the definition of humans as “linguistic animals” in light of a comparative approach on nonhuman animals’ cognitive systems. As Uexküll & Kriszat (1934/1992) have theorized, the epistemic access to each species-specific environment (Umwelt) is driven by different biocognitive processes. Within this conceptual framework, I identify the salient cognitive process that distinguishes each species typical perception of the world as the faculty of language meant in the following operational definition: the ability to connect different elements according to structural rules. In order to draw some conclusions about humans’ specific faculty of language, I review different empirical studies on nonhuman animals’ ability to recognize formal patterns of tokens. I suggest that what differentiates human language from other animals’ cognitive systems is the ability to categorize the units of a pattern, going beyond its perceptual aspects. In fact, humans are the only species known to be able to combine semantic units within a network of combinatorial logical relationships (Deacon 1997) that can be linked to the state of affairs in the external world (Wittgenstein 1922). I assume that this ability is the core cognitive process underlying a) the capacity to speak (or to reason) in verbal propositions and b) the general human faculty of language expressed, for instance, in the ability to draw visual conceptual maps or to compute mathematical expressions. In light of these considerations, I conclude providing some research questions that could lead to a more detailed comparative exploration of the faculty of language

    Preliminary experiments on human sensitivity to rhythmic structure in a grammar with recursive self-similarity

    Get PDF
    We present the first rhythm detection experiment using a Lindenmayer grammar, a self-similar recursive grammar shown previously to be learnable by adults using speech stimuli. Results show that learners were unable to correctly accept or reject grammatical and ungrammatical strings at the group level, although five (of 40) participants were able to do so with detailed instructions before the exposure phase

    The impact of adjacent-dependencies and staged-input on the learnability of center-embedded hierarchical structures

    Get PDF
    A theoretical debate in artificial grammar learning (AGL) regards the learnability of hierarchical structures. Recent studies using an AnBn grammar draw conflicting conclusions (Bahlmann and Friederici, 2006, De Vries et al., 2008). We argue that 2 conditions crucially affect learning AnBn structures: sufficient exposure to zero-level-of-embedding (0-LoE) exemplars and a staged-input. In 2 AGL experiments, learning was observed only when the training set was staged and contained 0-LoE exemplars. Our results might help understanding how natural complex structures are learned from exemplars

    Phrase structure grammars as indicative of uniquely human thoughts

    Get PDF
    I argue that the ability to compute phrase structure grammars is indicative of a particular kind of thought. This type of thought that is only available to cognitive systems that have access to the computations that allow the generation and interpretation of the structural descriptions of phrase structure grammars. The study of phrase structure grammars, and formal language theory in general, is thus indispensable to studies of human cognition, for it makes explicit both the unique type of human thought and the underlying mechanisms in virtue of which this thought is made possible

    The Vocal Babbling Behavior and Its Sibling Effects in a Wild Parrot

    Get PDF
    Vocal learning is a rare trait in the animal kingdom, defined as the sensorimotor imitation of sounds, and is only found in select groups of birds and mammals. Parrots are a behaviorally complex group of birds, famous for their ability to mimic social companions, but how they develop this ability in the wild has received little attention. The vocal learning period consists of a complex vocal babbling stage, a crucial developmental precursor for imitation of adult vocalizations in humans and songbirds, but has not been described in any of the 360+ parrot species. This project quantifies potential individual variation in vocal babbling of a wild population of Green-rumped Parrotlets (Forpus passerinus) in South America. This project also addresses whether variable sibling presence has an effect on the vocal babbling repertoire. This work exposes a cryptic developmental stage that has never been explored in wild parrots

    The Biological Nature of Human Language

    Get PDF
    Biolinguistics aims to shed light on the specifically biological nature of human language, focusing on five foundational questions: (1) What are the properties of the language phenotype? (2) How does language ability grow and mature in individuals? (3) How is language put to use? (4) How is language implemented in the brain? (5) What evolutionary processes led to the emergence of language? These foundational questions are used here to frame a discussion of important issues in the study of language, exploring whether our linguistic capacity is the result of direct selective pressure or due to developmental or biophysical constraints, and assessing whether the neural/computational components entering into language are unique to human language or shared with other cognitive systems, leading to a discussion of advances in theoretical linguistics, psycholinguistics, comparative animal behavior and psychology, genetics/genomics, disciplines that can now place these longstanding questions in a new light, while raising challenges for future research

    The Non-Hierarchical Nature of the Chomsky Hierarchy-Driven Artificial-Grammar Learning

    Get PDF
    Recent artificial-grammar learning (AGL) paradigms driven by the Chomsky hierarchy paved the way for direct comparisons between humans and animals in the learning of center embedding ([A[AB]B]). The AnBn grammars used by the first generation of such research lacked a crucial property of center embedding, where the pairs of elements are explicitly matched ([A1 [A2 B2] B1]). This type of indexing is implemented in the second-generation AnBn grammars. This paper reviews recent studies using such grammars. Against the premises of these studies, we argue that even those newer AnBn grammars cannot test the learning of syntactic hierarchy. These studies nonetheless provide detailed information about the conditions under which human adults can learn an AnBn grammar with indexing. This knowledge serves to interpret recent animal studies, which make surprising claims about animals’ ability to handle center embedding
    • …
    corecore