23 research outputs found

    Negative Reinforcement and Backtrack-Points for Recurrent Neural Networks for Cost-Based Abduction

    Get PDF
    Abduction is the process of proceeding from data describing a set of observations or events, to a set of hypotheses which best explains or accounts for the data. Cost-based abduction (CKA) is an AI formalism in which evidence to be explained is treated as a goal to be proven, proofs have costs based on how much needs to be assumed to complete the proof, and the set of assumptions needed to complete the least-cost proof are taken as the best explanation for the given evidence. In this paper, we introduce two techniques for improving the performance of high order recurrent networks (HORN) applied to cost-based abduction. In the backtrack-points technique, we use heuristics to recognize early that the network trajectory is moving in the wrong direction; we then restore the network state to a previously-stored point, and apply heuristic perturbations to nudge the network trajectory in a different direction. In the negative reinforcement technique, we add hyperedges to the network to reduce the attractiveness of local-minima. We apply these techniques on a 300-hypothesis, 900-rule particularly-difficult instance of CBA

    A Cognitive Robotic Imitation Learning System Based On Cause-Effect Reasoning

    Get PDF
    As autonomous systems become more intelligent and ubiquitous, it is increasingly important that their behavior can be easily controlled and understood by human end users. Robotic imitation learning has emerged as a useful paradigm for meeting this challenge. However, much of the research in this area focuses on mimicking the precise low-level motor control of a demonstrator, rather than interpreting the intentions of a demonstrator at a cognitive level, which limits the ability of these systems to generalize. In particular, cause-effect reasoning is an important component of human cognition that is under-represented in these systems. This dissertation contributes a novel framework for cognitive-level imitation learning that uses parsimonious cause-effect reasoning to generalize demonstrated skills, and to justify its own actions to end users. The contributions include new causal inference algorithms, which are shown formally to be correct and have reasonable computational complexity characteristics. Additionally, empirical validations both in simulation and on board a physical robot show that this approach can efficiently and often successfully infer a demonstrator’s intentions on the basis of a single demonstration, and can generalize learned skills to a variety of new situations. Lastly, computer experiments are used to compare several formal criteria of parsimony in the context of causal intention inference, and a new criterion proposed in this work is shown to compare favorably with more traditional ones. In addition, this dissertation takes strides towards a purely neurocomputational implementation of this causally-driven imitation learning framework. In particular, it contributes a novel method for systematically locating fixed points in recurrent neural networks. Fixed points are relevant to recent work on neural networks that can be “programmed” to exhibit cognitive-level behaviors, like those involved in the imitation learning system developed here. As such, the fixed point solver developed in this work is a tool that can be used to improve our engineering and understanding of neurocomputational cognitive control in the next generation of autonomous systems, ultimately resulting in systems that are more pliable and transparent

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    The emergence of active perception - seeking conceptual foundations

    Get PDF
    The aim of this thesis is to explain the emergence of active perception. It takes an interdisciplinary approach, by providing the necessary conceptual foundations for active perception research - the key notions that bridge the conceptual gaps remaining in understanding emergent behaviours of active perception in the context of robotic implementations. On the one hand, the autonomous agent approach to mobile robotics claims that perception is active. On the other hand, while explanations of emergence have been extensively pursued in Artificial Life, these explanations have not yet successfully accounted for active perception.The main question dealt with in this thesis is how active perception systems, as behaviour -based autonomous systems, are capable of providing relatively optimal perceptual guidance in response to environmental challenges, which are somewhat unpredictable. The answer is: task -level emergence on grounds of complicatedly combined computational strategies, but this notion needs further explanation.To study the computational strategies undertaken in active perception re- search, the thesis surveys twelve implementations. On the basis of the surveyed implementations, discussions in this thesis show that the perceptual task executed in support of bodily actions does not arise from the intentionality of a homuncu- lus, but is identified automatically on the basis of the dynamic small mod- ules of particular robotic architectures. The identified tasks are accomplished by quasi -functional modules and quasi- action modules, which maintain transformations of perceptual inputs, compute critical variables, and provide guidance of sensory -motor movements to the most relevant positions for fetching further needed information. Given the nature of these modules, active perception emerges in a different fashion from the global behaviour seen in other autonomous agent research.The quasi- functional modules and quasi- action modules cooperate by estimating the internal cohesion of various sources of information in support of the envisaged task. Specifically, such modules basically reflect various computational facilities for a species to single out the most important characteristics of its ecological niche. These facilities help to achieve internal cohesion, by maintaining a stepwise evaluation over the previously computed information, the required task, and the most relevant features presented in the environment.Apart from the above exposition of active perception, the process of task - level emergence is understood with certain principles extracted from four models of life origin. First, the fundamental structure of active perception is identified as the stepwise computation. Second, stepwise computation is promoted from baseline to elaborate patterns, i.e. from a simple system to a combinatory system. Third, a core requirement for all stepwise computational processes is the comparison between collected and needed information in order to insure the contribution to the required task. Interestingly, this point indicates that active perception has an inherent pragmatist dimension.The understanding of emergence in the present thesis goes beyond the distinc- tion between external processes and internal representations, which some current philosophers argue is required to explain emergence. The additional factors are links of various knowledge sources, in which the role of conceptual foundations is two -fold. On the one hand, those conceptual foundations elucidate how various knowledge sources can be linked. On the other, they make possible an interdisci- plinary view of emergence. Given this two -fold role, this thesis shows the unity of task -level emergence. Thus, the thesis demonstrates a cooperation between sci- ence and philosophy for the purpose of understanding the integrity of emergent cognitive phenomena

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Recurrent Neural Networks with Backtrack-points and Negative Reinforcement Applied to Cost-based Abduction

    No full text
    Abduction is the process of proceeding from data describing a set of observations or events, to a set of hypotheses which best explains or accounts for the data. Cost-based abduction (CBA) is an AI formalism in which evidence to be explained is treated as a goal to be proven, proofs have costs based on how much needs to be assumed to complete the proof, and the set of assumptions needed to complete the least-cost proof are taken as the best explanation for the given evidence. In this paper, we present two techniques for improving the performance of high order recurrent networks (HORN) applied to cost-based abduction. In the backtrack-points technique, we use heuristics to recognize early that the network trajectory is moving in the wrong direction; we then restore the network state to a previously stored point, and apply heuristic perturbations to nudge the network trajectory in a different direction. In the negative reinforcement technique, we add hyperedges to the network to reduce the attractiveness of local minima. We apply these techniques to a suite of six large CBA instances, systematically generated to be difficult

    Proceedings of the 1st European conference on disability, virtual reality and associated technologies (ECDVRAT 1996)

    Get PDF
    The proceedings of the conferenc

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore