2,464 research outputs found

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Optimization methods for electric power systems: An overview

    Get PDF
    Power systems optimization problems are very difficult to solve because power systems are very large, complex, geographically widely distributed and are influenced by many unexpected events. It is therefore necessary to employ most efficient optimization methods to take full advantages in simplifying the formulation and implementation of the problem. This article presents an overview of important mathematical optimization and artificial intelligence (AI) techniques used in power optimization problems. Applications of hybrid AI techniques have also been discussed in this article

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    A simple recurrent neural network for solution of linear programming: Application to a Microgrid

    Get PDF
    The aim of this paper is to present a simple new class of recurrent neural networks, which solves linear programming. It is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions, and the KKT multipliers are the control inputs to be implemented with finite time stabilizing terms based on the unit control, instead of common used activation functions. Thus, the main feature of the proposed network is the fixed number of parameters despite of the optimization problem dimension, which means, the network can be easily scaled from a small to a higher dimension problem. The applicability of the proposed scheme is tested on real-time optimization of an electrical Microgrid prototype.Consejo Nacional de Ciencia y Tecnologí

    A novel soft computing approach based on FIR to model and predict energy dynamic systems

    Get PDF
    Tesi en modalitat compendi de publicacionsWe are facing a global climate crisis that is demanding a change in the status quo of how we produce, distribute and consume energy. In the last decades, this is being redefined through Smart Grids(SG), an intelligent electrical network more observable, controllable, automated, fully integrated with energy services and the end-users. Most of the features and proposed SG scenarios are based on reliable, robust and fast energy predictions. For instance, for proper planning activities, such as generation, purchasing, maintenance and investment; for demand side management, like demand response programs; for energy trading, especially at local level, where productions and consumptions are more stochastics and dynamic; better forecasts also increase grid stability and thus supply security. A large variety of Artificial Intelligence(AI) techniques have been applied in the field of Short-term electricity Load Forecasting(SLF) at consumer level in low-voltage system, showing a better performance than classical techniques. Inaccuracy or failure in the SLF process may be translated not just in a non-optimal (low prediction accuracy) solution but also in frustration of end-users, especially in new services and functionalities that empower citizens. In this regard, some limitations have been observed in energy forecasting models based on AI such as robustness, reliability, accuracy and computation in the edge. This research proposes and develops a new version of Fuzzy Inductive Reasoning(FIR), called Flexible FIR, to model and predict the electricity consumption of an entity in the low-voltage grid with high uncertainties, and information missing, as well as the capacity to be deployed either in the cloud or locally in a new version of Smart Meters(SMs) based on Edge Computing(EC). FIR has been proved to be a powerful approach for model identification and system ’s prediction over dynamic and complex processes in different real world domains but not yet in the energy domain. Thus, the main goal of this thesis is to demonstrate that a new version of FIR, more robust, reliable and accurate can be a referent Soft Computing(SC) methodology to model and predict dynamic systems in the energy domain and that it is scalable to an EC integration. The core developments of Flexible FIR have been an algorithm that can cope with missing information in the input values, as well as learn from instances with Missing Values(MVs) in the knowledge-based, without compromising significantly the accuracy of the predictions. Moreover, Flexible FIR comes with new forecasting strategies that can cope better with loss of causality of a variable and dispersion of output classes than classical k nearest neighbours, making the FIR forecasting process more reliable and robust. Furthermore, Flexible FIR addresses another major challenge modelling with SC techniques, which is to select best model parameters. One of the most important parameters in FIR is the number k of nearest neighbours to be used in the forecast process. The challenge to select the optimal k, dynamically, is addressed through an algorithm, called KOS(K nearest neighbour Optimal Selection), which has been developed and tested also with real world data. It computes a membership aggregation function of all the neighbours with respect their belonging to the output classes.While with KOS the optimal parameter k is found online, with other approaches such as genetic algorithms or reinforcement learning is not, which increases the computational time.Ens trobem davant una crisis climàtica global que exigeix un canvi al status quo de la manera que produïm, distribuïm i consumim energia. En les darreres dècades, està sent redefinit gràcies a les xarxa elèctriques intel·ligents(SG: Smart Grid) amb millor observabilitat, control, automatització, integrades amb nous serveis energètics i usuaris finals. La majoria de les funcionalitats i escenaris de les SG es basen en prediccions de la càrrega elèctrica confiables, robustes i ràpides. Per les prediccions de càrregues elèctriques a curt termini(SLF: Short-term electricity Load Forecasting), a nivell de consumidors al baix voltatge, s’han aplicat una gran varietat de tècniques intel·ligència Artificial(IA) mostrant millor rendiment que tècniques estadístiques tradicionals. Un baix rendiment en SLF, pot traduir-se no només en una solució no-òptima (baixa precisió de predicció) sinó també en la frustració dels usuaris finals, especialment en nous serveis i funcionalitats que empoderarien als ciutadans. En el marc d’aquesta investigació es proposa i desenvolupa una nova versió de la metodologia del Raonament Inductiu Difús(FIR: Fuzzy Inductive Reasoning), anomenat Flexible FIR, capaç de modelar i predir el consum d’electricitat d’una entitat amb un grau d’incertesa molt elevat, inclús amb importants carències d’informació (missing values). A més, Flexible FIR té la capacitat de desplegar-se al núvol, així como localment, en el que podria ser una nova versió de Smart Meters (SM) basada en tecnologia d’Edge Computing (EC). FIR ja ha demostrat ser una metodologia molt potent per la generació de models i prediccions en processos dinàmics en diferents àmbits, però encara no en el de l’energia. Per tant, l’objectiu principal d’aquesta tesis és demostrar que una versió millorada de FIR, més robusta, fiable i precisa pot consolidar-se com una metodologia Soft Computing SC) de referencia per modelar i predir sistemes dinàmics en aplicacions per al sector de l’energia i que és escalable a una integració d’EC. Les principals millores de Flexible FIR han estat, en primer lloc, el desenvolupament i test d’un algorisme capaç de processar els valors d’entrada d’un model FIR tot i que continguin Missing Values (MV). Addicionalment, aquest algorisme també permet aprendre d’instàncies amb MV en la matriu de coneixement d’un model FIR, sense comprometre de manera significativa la precisió de les prediccions. En segon lloc, s’han desenvolupat i testat noves estratègies per a la fase de predicció, comportant-se millor que els clàssics k veïns més propers quan ens trobem amb pèrdua de causalitat d’una variable i dispersió en les classes de sortida, aconseguint un procés d’aprenentatge i predicció més confiable i robust. En tercer lloc, Flexible FIR aborda un repte molt comú en tècniques de SC: l’òptima parametrització del model. En FIR, un dels paràmetres més determinants és el número k de veïns més propers que s’utilitzaran durant la fase de predicció. La selecció del millor valor de k es planteja de manera dinàmica a través de l’algorisme KOS (K nearest neighbour Optimal Selection) que s’ha desenvolupat i testat també amb dades reals. Mentre que amb KOS el paràmetre òptim de k es calcula online, altres enfocaments mitjançant algoritmes genètics o aprenentatge per reforç el càlcul és offline, incrementant significativament el temps de resposta, sent a més a més difícil la implantació en escenaris d’EC. Aquestes millores fan que Flexible FIR es pugui adaptar molt bé en aplicacions d’EC. En aquest sentit es proposa el concepte d’un SM de segona generació basat en EC, que integra Flexible FIR com mòdul de predicció d’electricitat executant-se en el propi dispositiu i un agent EC amb capacitat per el trading d'energia produïda localment. Aquest agent executa un innovador mecanisme basat en incentius, anomenat NRG-X-Change que utilitza una nova moneda digital descentralitzada per l’intercanvi d’energia, que s’anomena NRGcoin.Estamos ante una crisis climática global que exige un cambio del status quo de la manera que producimos, distribuimos y consumimos energía. En las últimas décadas, este status quo está siendo redefinido debido a: la penetración de las energías renovables y la generación distribuida; nuevas tecnologías como baterías y paneles solares con altos rendimientos; y la forma en que se consume la energía, por ejemplo, a través de vehículos eléctricos o con la electrificación de los hogares. Estas palancas requieren una red eléctrica inteligente (SG: Smart Grid) con mayor observabilidad, control, automatización y que esté totalmente integrada con nuevos servicios energéticos, así como con sus usuarios finales. La mayoría de las funcionalidades y escenarios de las redes eléctricas inteligentes se basan en predicciones de la energía confiables, robustas y rápidas. Por ejemplo, para actividades de planificación como la generación, compra, mantenimiento e inversión; para la gestión de la demanda, como los programas de demand response; en el trading de electricidad, especialmente a nivel local, donde las producciones y los consumos son más estocásticos y dinámicos; una mejor predicción eléctrica también aumenta la estabilidad de la red y, por lo tanto, mejora la seguridad. Para las predicciones eléctricas a corto plazo (SLF: Short-term electricity Load Forecasting), a nivel de consumidores en el bajo voltaje, se han aplicado una gran variedad de técnicas de Inteligencia Artificial (IA) mostrando mejor rendimiento que técnicas estadísticas convencionales. Un bajo rendimiento en los modelos predictivos, puede traducirse no solamente en una solución no-óptima (baja precisión de predicción) sino también en frustración de los usuarios finales, especialmente en nuevos servicios y funcionalidades que empoderan a los ciudadanos. En este sentido, se han identificado limitaciones en modelos de predicción de energía basados en IA, como la robustez, fiabilidad, precisión i computación en el borde. En el marco de esta investigación se propone y desarrolla una nueva versión de la metodología de Razonamiento Inductivo Difuso (FIR: Fuzzy Inductive Reasoning), que hemos llamado Flexible FIR, capaz de modelar y predecir el consumo de electricidad de una entidad con altos grados de incertidumbre e incluso con importantes carencias de información (missing values). Además, Flexible FIR tiene la capacidad de desplegarse en la nube, así como localmente, en lo que podría ser una nueva versión de Smart Meters (SM) basada en tecnología de Edge Computing (EC). En el pasado, ya se ha demostrado que FIR es una metodología muy potente para la generación de modelos y predicciones en procesos dinámicos, sin embargo, todavía no ha sido demostrado en el campo de la energía. Por tanto, el objetivo principal de esta tesis es demostrar que una versión mejorada de FIR, más robusta, fiable y precisa puede consolidarse como metodología Soft Computing (SC) de referencia para modelar y predecir sistemas dinámicos en aplicaciones para el sector de la energía y que es escalable hacia una integración de EC. Las principales mejoras en Flexible FIR han sido, en primer lugar, el desarrollo y testeo de un algoritmo capaz de procesar los valores de entrada en un modelo FIR a pesar de que contengan Missing Values (MV). Además, dicho algoritmo también permite aprender de instancias con MV en la matriz de conocimiento de un modelo FIR, sin comprometer de manera significativa la precisión de las predicciones. En segundo lugar, se han desarrollado y testeado nuevas estrategias para la fase de predicción de un modelo FIR, comportándose mejor que los clásicos k vecinos más cercanos ante la pérdida de causalidad de una variable y dispersión de clases de salida, consiguiendo un proceso de aprendizaje y predicción más confiable y robusto. En tercer lugar, Flexible FIR aborda un desafío muy común en técnicas de SC: la óptima parametrización del modelo. En FIR, uno de los parámetros más determinantes es el número k de vecinos más cercanos que se utilizarán en la fase de predicción. La selección del mejor valor de k se plantea de manera dinámica a través del algoritmo KOS (K nearest neighbour Optimal Selection) que se ha desarrollado y probado también con datos reales. Dicho algoritmo calcula una función de membresía agregada, de todos los vecinos, con respecto a su pertenencia a las clases de salida. Mientras que con KOS el parámetro óptimo de k se calcula online, otros enfoques mediante algoritmos genéticos o aprendizaje por refuerzo, el cálculo es offline incrementando significativamente el tiempo de respuesta, siendo además difícil su implantación en escenarios de EC. Estas mejoras hacen que Flexible FIR se adapte muy bien en aplicaciones de EC, en las que la analítica de datos en streaming debe ser fiable, robusta y con un modelo suficientemente ligero para ser ejecutado en un IoT Gateway o dispositivos más pequeños. También, en escenarios con poca conectividad donde el uso de la computación en la nube es limitado y los parámetros del modelo se calculan localmente. Con estas premisas, en esta tesis, se propone el concepto de un SM de segunda generación basado en EC, que integra Flexible FIR como módulo de predicción de electricidad ejecutándose en el dispositivo y un agente EC con capacidad para el trading de energía producida localmente. Dicho agente ejecuta un novedoso mecanismo basado en incentivos, llamado NRG-X-Change que utiliza una nueva moneda digital descentralizada para el intercambio de energía, llamada NRGcoin.Postprint (published version

    인공신경망 발전량 예측 불확실성을 고려한 가상발전소 모델예측제어

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 기계공학부, 2022.2. 차석원.This study presents statistical and control analyses for grid resources to enhance the stability and efficiency on their operations. More specifically, this study focuses on cost-optimal model predictive control for a virtual power plant with the uncertainty in neural network power forecasting. Chapter 2 analyzes the monitoring data of solar photovoltaic power plants (PVs) distributed throughout Korea. Errors within the raw data are categorized according to their causes and symptoms. The effect of typical errors on the statistical analysis is particularly evaluated for a day-ahead hourly PV power forecast study. Chapter 3 addresses a control strategy for an energy storage system (ESS). A virtual power plant or a microgrid with a commercial building load, PV generation, and ESS charge/discharge operation is targeted as a behind-the-meter consumer-generator. Economic dispatch scheduling problem for the ESS is formulated as a mixed-integer linear program. The main goal of the control problem is optimizing the economic benefit under the time-of-use tariff and future uncertainties. Peak control as a regulation ancillary market service can be also applied during the optimization. The resulting control schedule robustly guarantees the economic benefit even under the forecast uncertainties in load power consumption and PV power generation patterns. Chapter 4 presents a more specific case of day-ahead hourly ESS scheduling. An integration of a PV and ESS is considered as a control target. Power transactions between the grid and resources are normally settled according to the time-of-use tariff. Additional incentive is provided with respect to the imbalance between the forecasted-scheduled power and actual dispatch power. This incentive policy stands for the imbalance tariff of a regulation ancillary service market. Accurate forecasting and robust scheduling functions are required for the energy management system to maximize both revenues. The PV power forecast model, which is based on a recurrent neural network, uses a convolutional neural network discriminator to decrease the gap between its open-loop one-step-ahead training and closed-loop multi-step-ahead test dynamics. This generative adversarial network concept for the model training process ensures a stable day-ahead hourly forecast performance. The robust ESS scheduling model handles the remaining forecast error as a box uncertainty set to consider the cost-optimality and cost-robustness of the control schedule. The scheduling model is formulated as a concise mixed-integer linear program to enable fast online optimization with the consideration for both transaction and incentive revenues.본 논문에서는 전력망 내 에너지자원들의 운영에 있어 안정성과 효율을 향상시키기 위한 통계분석 및 제어분석 방법과 그 결과를 서술한다. 더욱 상세하게는 인공신경망 기반 발전량 예측 결과의 불확정성을 고려한 가상발전소 전력시장 비용 최적화 모델예측제어를 목표로 한다. 제2장에서는 대한민국 전역에 분포한 태양광발전소들의 모니터링 데이터에 대한 분석 결과를 서술한다. 원시 데이터 내에 존재하는 오류들이 목록화되며, 그 원인과 증상에 따라 분류된다. 일반적으로 발생 가능한 데이터 오류들이 통계분석 결과에 미치는 영향을 확인하기 위해, 인공신경망 기반 통계적 태양광발전소 발전량 예측 모델의 성능에 대한 오류 데이터의 영향이 평가된다. 제3장에서는 전력망 내 에너지저장장치에 대한 제어 방법론을 제시한다. 상업용 건물 부하, 태양광발전소 발전, 에너지저장장치 충방전 운전을 포함하는 가상발전소 또는 마이크로그리드가 계량기 후단에 위치한 전력 소비원이자 발전원으로 제시된다. 에너지저장장치를 위한 경제적 급전계획 문제는 혼합정수 선형계획법 형태로 수식화된다. 최적화 목표는 시간대별 요금제하에서 미래 부하와 발전량 예측 불확실성을 고려한 마이크로그리드 경제적 이득 최대화이며, 피크 제어에 대한 목표 역시 보조서비스 형태로 적용 가능하다. 최적화 문제 해결을 통해 도출된 충방전 제어 스케줄은 마이크로그리드 내 부하와 발전량 예측에 대한 불확실성에도 불구하고 경제적 이득을 강건하게 보장할 수 있다. 제4장에서는 특수 조건하에서의 에너지저장장치 하루 전 시간대별 운전 스케줄 도출 방법론을 제시한다. 태양광발전소와 에너지저장장치를 물리적 또는 가상으로 연결한 집합전력자원이 고려된다. 집합전력자원과 전력망 사이의 전력 거래는 일반적인 시간대별 요금제하에서 이루어진다. 전력망 보조서비스에 해당하는 불균형 요금제가 대한민국 전력시장에서의 분산자원 중개사업자 인센티브 제도 형태로 추가 고려된다. 해당 제도 하에서 집합전력자원은 전일 예측 또는 결정된 운전 스케줄과 실제 스케줄 사이의 오차율에 따라 추가적인 인센티브를 부여받을 수 있다. 집합자원을 위한 에너지관리시스템은 시간대별 요금제와 인센티브 각각에 따른 경제적 이득을 최대화하기 위하여 정확한 예측 기능과 강건한 스케줄 도출 기능을 제공한다. 제안되는 RNN 기반 태양광발전소 발전량 예측 모델은 개방회로 형태의 학습 과정과 폐회로 형태의 사용 방식 사이의 차이를 줄이기 위해 CNN 기반 식별기를 적용한다. 모델 학습 과정에 적용되는 이 GAN 개념은 하루 전 도출한 시간대별 운전 스케줄이 안정적이도록 지원한다. 제안되는 에너지저장장치를 위한 강건 스케줄 도출 모델은 남아있는 예측 오차를 박스 형태의 불확실성 집합으로 처리하여, 도출된 제어 스케줄의 경제적 최적성과 강건성을 보장한다. 스케줄 도출 모델은 간결한 혼합정수 선형계획법 형태로 수식화되어 전력 거래 수익과 인센티브 수익 양쪽 모두를 고려한 빠른 실시간 최적화가 가능하다.1 Introduction 1 2 Analysis of Data Errors in the Solar Photovoltaic Power Plant Monitoring System Database 8 2.1 Background 9 2.2 Solar Photovoltaic Power Plants in Korea 11 2.3 Solar Photovoltaic Power Plants for Analysis 14 2.4 Errors in Static Information Data 16 2.4.1 Errors: Missing or Redundant Static Information Data 19 2.4.2 Errors: Incorrect Specification Data 20 2.5 Errors in Monitoring Data 21 2.5.1 Errors: Invalid Peak Power Values 21 2.5.2 Errors: Invalid Units 23 2.5.3 Errors: Conflictions Between Static and Monitoring Data 23 2.5.4 Errors: Garbage or Corrupted Values 24 2.5.5 Errors: Terminations of Daily Monitoring 26 2.5.6 Errors: Long-term Disconnections 27 2.5.7 Errors: Fluctuating Data Transmission Periods 28 2.5.8 Errors: Disharmonious Data Collection Timings 30 2.6 Analyses with Error Data 33 2.6.1 Effect of Incorrect Location Information 38 2.6.2 Effect of Invalid Monitoring Data Values 40 2.6.3 Effect of Missing Monitoring Data 42 2.7 Conclusion 45 2.8 Acknowledgments 47 3 Robust Scheduling of a Microgrid Energy Storage System with Ancillary Service Considerations 48 3.1 Background 49 3.2 System Architecture 52 3.3 Robust MILP Optimization 55 3.3.1 ESS Constraints 55 3.3.2 Non-Robust Approach 56 3.3.3 Intuitive Approach 58 3.3.4 ESS Power Partitioning Approach 60 3.3.5 Combined Constraint Approach 63 3.4 ESS Efficiency Maps 65 3.5 External Working Conditions 68 3.5.1 Peak Control 69 3.5.2 Demand Response 71 3.6 Simulation Results 72 3.6.1 Computation Time 72 3.6.2 Cost Robustness 76 3.6.3 Precise ESS Control 77 3.6.4 External Working Condition 79 3.7 Conclusion 81 3.8 Acknowledgments 82 4 Robust PV-BESS Scheduling for a Grid with Incentive for Forecast Accuracy 83 4.1 Background 84 4.2 PV Power Forecast Model 88 4.2.1 Data Preprocessing 88 4.2.2 RNN-based Sequence Generator 90 4.2.3 CNN-based Sequence Discriminator 93 4.2.4 Training Objectives 94 4.2.5 Training and Validation 96 4.3 Robust BESS Scheduling 98 4.3.1 Power Transaction Revenue 98 4.3.2 Forecast Accuracy Incentive 102 4.4 Results 106 4.4.1 Benchmark Models for PV Power Forecasting 106 4.4.2 Stability of the PV Power Forecast Results 107 4.4.3 Accuracy of the PV Power Forecast Results 109 4.4.4 Incentive Analysis for the PV Power Forecast Results 110 4.4.5 Effect of Input Data Accuracy on Forecast Results 111 4.4.6 Robust BESS Scheduling for the Transaction Revenue 112 4.4.7 Computation Speed of the Scheduling Problems 116 4.4.8 Online Optimization for the Incentive Revenue 117 4.5 Conclusion 119 4.6 Appendix 120 4.6.1 A Toy Example for the Robust Optimization Result 120 4.7 Acknowledgments 121 5 Conclusion 122 Bibliography 125박

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Multi-step Ahead Inflow Forecasting for a Norwegian Hydro-Power Use-Case, Based on Spatial-Temporal Attention Mechanism

    Get PDF
    Hydrological forecasting has been an ongoing area of research due to its importance to improve decision making on water resource management, flood management, and climate change mitigation. With the increasing availability of hydrological data, Machine Learning (ML) techniques have started to play an important role, enabling us to better understand and predict complex hydrological events. However, some challenges remain. Hydrological processes have spatial and temporal dependencies that are not always easy to capture with traditional ML models, and a thorough understanding of these dependencies is essential when developing accurate predictive models. This thesis explores the use of ML techniques in hydrological forecasting and consists of an introduction, two papers, and an application developed alongside the case study. The motivation for this research is to enhance our understanding of the spatial and temporal dependencies in hydrological processes and to explore how ML techniques, particularly those incorporating attention mechanisms, can aid in hydrological forecasting. The first paper is a chronological literature review that explores the development of data-driven forecasting in hydrology, and highlighting the potential application of attention mechanisms in hydrological forecasting. These attention mechanisms have proven to be successful in various domains, allowing models to focus on the most relevant parts of the input for making predictions, which is particularly useful when dealing with spatial and temporal data. The second paper is a case study of a specific ML model incorporating these attention mechanisms. The focus is to illustrate the influence of spatial and temporal dependencies in a real-world hydrological forecasting scenario, thereby showcasing the practical application of these techniques. In parallel with the case study, an application has been developed, employing the principles and techniques discovered throughout the course of this research. The application aims to provide a practical demonstration of the concepts explored in the thesis, contributing to the field of hydrological forecasting by introducing a tool for hydropower suppliers.Masteroppgave i Programvareutvikling samarbeid med HVLPROG399MAMN-PRO

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio
    corecore