798 research outputs found

    Sliding-mode neuro-controller for uncertain systems

    Get PDF
    In this paper, a method that allows for the merger of the good features of sliding-mode control and neural network (NN) design is presented. Design is performed by applying an NN to minimize the cost function that is selected to depend on the distance from the sliding-mode manifold, thus providing that the NN controller enforces sliding-mode motion in a closed-loop system. It has been proven that the selected cost function has no local minima in controller parameter space, so under certain conditions, selection of the NN weights guarantees that the global minimum is reached, and then the sliding-mode conditions are satisfied; thus, closed-loop motion is robust against parameter changes and disturbances. For controller design, the system states and the nominal value of the control input matrix are used. The design for both multiple-input-multiple-output and single-input-single-output systems is discussed. Due to the structure of the (M)ADALINE network used in control calculation, the proposed algorithm can also be interpreted as a sliding-mode-based control parameter adaptation scheme. The controller performance is verified by experimental results

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination
    corecore