37,757 research outputs found

    Recursive recurrent neural network: A novel model for manipulator control with different levels of physical constraints

    Get PDF
    Manipulators actuate joints to let end effectors to perform precise path tracking tasks. Recurrent neural network which is described by dynamic models with parallel processing capability, is a powerful tool for kinematic control of manipulators. Due to physical limitations and actuation saturation of manipulator joints, the involvement of joint constraints for kinematic control of manipulators is essential and critical. However, current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints, and to the best of our knowledge, methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported. In this study, for the first time, a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints, and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders. The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution. Simulation results further demonstrate the effectiveness of the proposed method in end-effector path tracking control under different levels of joint constraints based on the Kuka manipulator system. Comparisons with other methods such as the pseudoinverse-based method and conventional recurrent neural network method substantiate the superiority of the proposed method

    Adaptive self-recurrent wavelet neural network and sliding mode controller/observer for a slider crank mechanism

    Get PDF
    In this paper, a novel control strategy based on an adaptive Self-Recurrent Wavelet Neural Network (SRWNN) and a sliding mode controller/observer for a slider crank mechanism is proposed. The aim is to reduce the tracking error of the linear displacement of this mechanism while following a specified trajectory. The controller design consists of two parts. The first one is a sliding mode control strategy and the second part is an SRWNN controller. This controller is trained offline first, and then the SRWNN weights are updated online by the adaptive control law. Apart from the hybrid control strategy proposed in this paper, a velocity observer is implemented to replace the use of velocity sensors. The outcomes obtained in the numerical experiment section prove that the smallest tracking error is obtained for the linear and angular displacements in comparison with other strategies found in literature due to the uncertainty and disturbance rejection properties of the sliding mode and the self-recurrent wavelet neural network controllers.Peer ReviewedPostprint (author's final draft

    A recurrent emotional CMAC neural network controller for vision-based mobile robots

    Get PDF
    Vision-based mobile robots often suffer from the difficulties of high nonlinear dynamics and precise positioning requirements, which leads to the development demand of more powerful nonlinear approximation in controlling and monitoring of mobile robots. This paper proposes a recurrent emotional cerebellar model articulation controller (RECMAC) neural network in meeting such demand. In particular, the proposed network integrates a recurrent loop and an emotional learning mechanism into a cerebellar model articulation controller (CMAC), which is implemented as the main component of the controller module of a vision-based mobile robot. Briefly, the controller module consists of a sliding surface, the RECMAC, and a compensator controller. The incorporation of the recurrent structure in a slide model neural network controller ensures the retaining of the previous states of the robot to improve its dynamic mapping ability. The convergence of the proposed system is guaranteed by applying the Lyapunov stability analysis theory. The proposed system was validated and evaluated by both simulation and a practical moving-target tracking task. The experimentation demonstrated that the proposed system outperforms other popular neural network-based control systems, and thus it is superior in approximating highly nonlinear dynamics in controlling vision-based mobile robots

    A recurrent neural network applied to optimal motion control of mobile robots with physical constraints

    Get PDF
    Conventional solutions, such as the conventional recurrent neural network (CRNN) and gradient recurrent neural network (GRNN), for the motion control of mobile robots in the unified framework of recurrent neural network (RNN) are difficult to simultaneously consider both criteria optimization and physical constraints. The limitation of the RNN solution may lead to the damage of mobile robots for exceeding physical constraints during the task execution. To overcome this limitation, this paper proposes a novel inequality and equality constrained optimization RNN (IECORNN) to handle the motion control of mobile robots. Firstly, the real-time motion control problem with both criteria optimization and physical constraints is skillfully converted to a real-time equality system by leveraging the Lagrange multiplier rule. Then, the detailed design process for the proposed IECORNN is presented together with the neural network architecture developed. Afterward, theoretical analyses on the motion control problem conversion equivalence, global stability, and exponential convergence property are rigorously provided. Finally, two numerical simulation verifications and extensive comparisons with other existing RNNs, e.g., the CRNN and the GRNN, based on the mobile robot for two different path-tracking applications sufficiently demonstrate the effectiveness and superiority of the proposed IECORNN for the real-time motion control of mobile robots with both criteria optimization and physical constraints. This work makes progresses in both theory as well as practice, and fills the vacancy in the unified framework of RNN in motion control of mobile robots

    Complex dynamical network control for trajectory tracking using delayed recurrent neural networks

    Get PDF
    In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems

    On-line adaptive control of dynamic systems preceded by hysteresis via neural networks

    Get PDF
    This thesis deals with on-line adaptive control of a class of dynamic systems preceded by backlash-like hysteresis nonlinearities via dynamic neural networks. A three layer recurrent neural network called the diagonal recurrent neural network (DRNN) is applied to construct the hysteresis inverse compensator (DRNNC) to remove the effect of hysteresis. An on-line learning algorithm called the dynamic back propagation (DBP) algorithm is developed to train the DRNN. Based on the cancellation of hysteresis effect, an adaptive tracking control architecture, which is constructed through the combination of sliding mode and Gaussian network (GNNC), is then proposed. The diagonal recurrent neural network compensator (DRNN) and Gaussian network controller (GNNC) are trained at the same time since DRNN requires fewer weights, and less training time, and still preserves the dynamic characteristics, which allow the DRNN model to be used for on-line application. The performance of this control structure is illustrated through simulations with example system

    Neurodynamic approaches to model predictive control.

    Get PDF
    Pan, Yunpeng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (p. 98-107).Abstract also in Chinese.Abstract --- p.ip.iiiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.2Chapter 1.1 --- Model Predictive Control --- p.2Chapter 1.2 --- Neural Networks --- p.3Chapter 1.3 --- Existing studies --- p.6Chapter 1.4 --- Thesis structure --- p.7Chapter 2 --- Two Recurrent Neural Networks Approaches to Linear Model Predictive Control --- p.9Chapter 2.1 --- Problem Formulation --- p.9Chapter 2.1.1 --- Quadratic Programming Formulation --- p.10Chapter 2.1.2 --- Linear Programming Formulation --- p.13Chapter 2.2 --- Neural Network Approaches --- p.15Chapter 2.2.1 --- Neural Network Model 1 --- p.15Chapter 2.2.2 --- Neural Network Model 2 --- p.16Chapter 2.2.3 --- Control Scheme --- p.17Chapter 2.3 --- Simulation Results --- p.18Chapter 3 --- Model Predictive Control for Nonlinear Affine Systems Based on the Simplified Dual Neural Network --- p.22Chapter 3.1 --- Problem Formulation --- p.22Chapter 3.2 --- A Neural Network Approach --- p.25Chapter 3.2.1 --- The Simplified Dual Network --- p.26Chapter 3.2.2 --- RNN-based MPC Scheme --- p.28Chapter 3.3 --- Simulation Results --- p.28Chapter 3.3.1 --- Example 1 --- p.28Chapter 3.3.2 --- Example 2 --- p.29Chapter 3.3.3 --- Example 3 --- p.33Chapter 4 --- Nonlinear Model Predictive Control Using a Recurrent Neural Network --- p.36Chapter 4.1 --- Problem Formulation --- p.36Chapter 4.2 --- A Recurrent Neural Network Approach --- p.40Chapter 4.2.1 --- Neural Network Model --- p.40Chapter 4.2.2 --- Learning Algorithm --- p.41Chapter 4.2.3 --- Control Scheme --- p.41Chapter 4.3 --- Application to Mobile Robot Tracking --- p.42Chapter 4.3.1 --- Example 1 --- p.44Chapter 4.3/2 --- Example 2 --- p.44Chapter 4.3.3 --- Example 3 --- p.46Chapter 4.3.4 --- Example 4 --- p.48Chapter 5 --- Model Predictive Control of Unknown Nonlinear Dynamic Sys- tems Based on Recurrent Neural Networks --- p.50Chapter 5.1 --- MPC System Description --- p.51Chapter 5.1.1 --- Model Predictive Control --- p.51Chapter 5.1.2 --- Dynamical System Identification --- p.52Chapter 5.2 --- Problem Formulation --- p.54Chapter 5.3 --- Dynamic Optimization --- p.58Chapter 5.3.1 --- The Simplified Dual Neural Network --- p.59Chapter 5.3.2 --- A Recursive Learning Algorithm --- p.60Chapter 5.3.3 --- Convergence Analysis --- p.61Chapter 5.4 --- RNN-based MPC Scheme --- p.65Chapter 5.5 --- Simulation Results --- p.67Chapter 5.5.1 --- Example 1 --- p.67Chapter 5.5.2 --- Example 2 --- p.68Chapter 5.5.3 --- Example 3 --- p.76Chapter 6 --- Model Predictive Control for Systems With Bounded Uncertainties Using a Discrete-Time Recurrent Neural Network --- p.81Chapter 6.1 --- Problem Formulation --- p.82Chapter 6.1.1 --- Process Model --- p.82Chapter 6.1.2 --- Robust. MPC Design --- p.82Chapter 6.2 --- Recurrent Neural Network Approach --- p.86Chapter 6.2.1 --- Neural Network Model --- p.86Chapter 6.2.2 --- Convergence Analysis --- p.88Chapter 6.2.3 --- Control Scheme --- p.90Chapter 6.3 --- Simulation Results --- p.91Chapter 7 --- Summary and future works --- p.95Chapter 7.1 --- Summary --- p.95Chapter 7.2 --- Future works --- p.96Bibliography --- p.9

    Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach

    Get PDF
    In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented

    Improvement of voltage stability for grid connected solar photovoltaic systems using static synchronous compensator with recurrent neural network

    Get PDF
    Purpose. This article proposes a new control strategy for static synchronous compensator in utility grid system. The proposed photovoltaic fed static synchronous compensator is utilized along with recurrent neural network based reference voltage generation is presented in grid system network. The novelty of the proposed work consists in presenting a Landsman converter enhanced photovoltaic fed static synchronous compensator with recurrent neural network algorithm, to generate voltage and maintain the voltage-gain ratio. Methods. The proposed algorithm which provides sophisticated and cost-effective solution for utilization of adaptive neuro-fuzzy inference system as maximum power point tracking assures controlled output and supports the extraction of complete power from the photovoltaic panel. Grid is interconnected with solar power, voltage phase angle mismatch, harmonic and voltage instability may occur in the distribution grid. The proposed control technique strategy is validated using MATLAB/Simulink software and hardware model to analysis the working performances. Results. The results obtained show that the power quality issue, the proposed system to overcome through elimination of harmonics, reference current generation is necessary, which is accomplished by recurrent neural network. By recurrent neural network, the reference signal is generated more accurately and accordingly the pulses are generated for controlling the inverter. Originality. Compensation of power quality issues, grid stability and harmonic reduction in distribution network by using photovoltaic fed static synchronous compensator is utilized along with recurrent neural network controller. Practical value. The work concerns the comparative study and the application of static synchronous compensator with recurrent neural network controller to achieve a good performance control system of the distribution network system. This article presents a comparative study between the conventional static synchronous compensator, static synchronous compensator with recurrent neural network and hardware implementation with different load. The strategy based on the use of a static synchronous compensator with recurrent neural network algorithm for the control of the continuous voltage stability and harmonic for the distribution network-linear as well as non-linear loads in efficient manner. The study is validated by the simulation results based on MATLAB/Simulink software and hardware model.Мета. У статті пропонується нова стратегія управління статичним синхронним компенсатором в енергосистемі. Запропонований статичний синхронний компенсатор з живленням від фотоелектричних елементів використовується разом з генератором опорної напруги на основі нейронної рекурентної мережі, представленим в мережі енергосистеми. Новизна запропонованої роботи полягає у поданні статичного синхронного компенсатора з покращеним фотоелектричним перетворювачем Ландсмана з алгоритмом рекурентної нейронної мережі для генерації напруги та підтримки коефіцієнта посилення за напругою. Методи. Запропонований алгоритм, який забезпечує ефективне та економічне рішення для використання адаптивної нейро-нечіткої системи логічного виведення як відстеження точки максимальної потужності, забезпечує контрольований вихід та підтримує вилучення повної потужності з фотогальванічної панелі. Мережа взаємопов’язана із сонячною енергією, у розподільній мережі можуть виникати невідповідність фазового кута напруги, гармоніки та нестабільність напруги. Запропонована стратегія методу управління перевіряється з використанням моделей програмного забезпечення MATLAB/Simulink та апаратного забезпечення для аналізу робочих характеристик. Результати. Отримані результати показують, що проблема якості електроенергії, яку запропонована система долає за допомогою усунення гармонік,потребує генерації еталонного струму, що здійснюється рекурентною нейронної мережею. За допомогою рекурентної нейронної мережі більш точно формується еталонний сигнал і відповідно генеруються імпульси для керування інвертором. Оригінальність. Компенсація проблем з якістю електроенергії, стабільністю мережі та зниженням гармонік у розподільній мережі за допомогою статичного синхронного компенсатора з фотоелектричним живленням використовується разом із контролером рекурентної нейронної мережі. Практична цінність. Робота стосується порівняльного дослідження та застосування статичного синхронного компенсатора з рекурентним нейромережевим контролером для досягнення хорошої продуктивності системи управління системою розподільної мережі. У цій статті представлено порівняльне дослідження традиційного статичного синхронного компенсатора, статичного синхронного компенсатора з рекурентною нейронною мережею та апаратною реалізацією з різним навантаженням. Стратегія, що ґрунтується на використанні статичного синхронного компенсатора з рекурентним алгоритмом нейронної мережі для ефективного контролю стабільності постійної напруги та гармонік для лінійних та нелінійних навантажень розподільної мережі. Дослідження підтверджується результатами моделювання з урахуванням програмно-апаратної моделі MATLAB/Simulink
    corecore