543 research outputs found

    Modelling COD concentration by using three different ANFIS techniques

    Get PDF
    Artificial intelligence (AI) techniques have been successfully performed in many different water resources applications such as rainfall-runoff, precipitation, evaporation, discharge (Q), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), sediment concentration and lake levels by many researchers over the last three decades. In this study, three different adaptive neuro-fuzzy inference system (ANFIS) techniques, ANFIS with fuzzy clustering (ANFIS-FCM), ANFIS with grid partition (ANFIS-GP) and ANFIS with subtractive clustering (ANFIS-SC), were developed to estimate COD concentration by using various combinations of daily input important variables water suspended solids (SS), discharge (Q), temperature (T) and pH. Root mean square error (RMSE), mean absolute error (MAE) and determination coefficient (R2) statistics were used for the comparison criteria. Training, testing and validation phase’s results of the optimal ANFIS models were also graphically compared each other. Comparison of the results indicated that the ANFIS-SC(1,0.3,1) model whose input is water SS was found to be slightly better than the other models in estimation of COD according to the comparison criteria in testing phase. In the validation phase, however, ANFISFCM( 1,3,gauss,1) model performed slightly better than ANFIS-GP(3,trimf,constant,1) and ANFIS-SC(1,0.3,1) models. It can be said that three different ANFIS techniques provide similar accuracy in estimating COD

    Modelling activated sludge wastewater treatment plants using artificial intelligence techniques (fuzzy logic and neural networks)

    Get PDF
    Activated sludge process (ASP) is the most commonly used biological wastewater treatment system. Mathematical modelling of this process is important for improving its treatment efficiency and thus the quality of the effluent released into the receiving water body. This is because the models can help the operator to predict the performance of the plant in order to take cost-effective and timely remedial actions that would ensure consistent treatment efficiency and meeting discharge consents. However, due to the highly complex and non-linear characteristics of this biological system, traditional mathematical modelling of this treatment process has remained a challenge. This thesis presents the applications of Artificial Intelligence (AI) techniques for modelling the ASP. These include the Kohonen Self Organising Map (KSOM), backpropagation artificial neural networks (BPANN), and adaptive network based fuzzy inference system (ANFIS). A comparison between these techniques has been made and the possibility of the hybrids between them was also investigated and tested. The study demonstrated that AI techniques offer viable, flexible and effective modelling methodology alternative for the activated sludge system. The KSOM was found to be an attractive tool for data preparation because it can easily accommodate missing data and outliers and because of its power in extracting salient features from raw data. As a consequence of the latter, the KSOM offers an excellent tool for the visualisation of high dimensional data. In addition, the KSOM was used to develop a software sensor to predict biological oxygen demand. This soft-sensor represents a significant advance in real-time BOD operational control by offering a very fast estimation of this important wastewater parameter when compared to the traditional 5-days bio-essay BOD test procedure. Furthermore, hybrids of KSOM-ANN and KSOM-ANFIS were shown to result much more improved model performance than using the respective modelling paradigms on their own.Damascus Universit

    Review of Anaerobic Digestion Modeling and Optimization Using Nature-Inspired Techniques

    Get PDF
    Although it is a well-researched topic, the complexity, time for process stabilization, and economic factors related to anaerobic digestion call for simulation of the process offline with the help of computer models. Nature-inspired techniques are a recently developed branch of artificial intelligence wherein knowledge is transferred from natural systems to engineered systems. For soft computing applications, nature-inspired techniques have several advantages, including scope for parallel computing, dynamic behavior, and self-organization. This paper presents a comprehensive review of such techniques and their application in anaerobic digestion modeling. We compiled and synthetized the literature on the applications of nature-inspired techniques applied to anaerobic digestion. These techniques provide a balance between diversity and speed of arrival at the optimal solution, which has stimulated their use in anaerobic digestion modeling

    A review of the use of artificial intelligence methods in infrastructure systems

    Get PDF
    The artificial intelligence (AI) revolution offers significant opportunities to capitalise on the growth of digitalisation and has the potential to enable the ‘system of systems’ approach required in increasingly complex infrastructure systems. This paper reviews the extent to which research in economic infrastructure sectors has engaged with fields of AI, to investigate the specific AI methods chosen and the purposes to which they have been applied both within and across sectors. Machine learning is found to dominate the research in this field, with methods such as artificial neural networks, support vector machines, and random forests among the most popular. The automated reasoning technique of fuzzy logic has also seen widespread use, due to its ability to incorporate uncertainties in input variables. Across the infrastructure sectors of energy, water and wastewater, transport, and telecommunications, the main purposes to which AI has been applied are network provision, forecasting, routing, maintenance and security, and network quality management. The data-driven nature of AI offers significant flexibility, and work has been conducted across a range of network sizes and at different temporal and geographic scales. However, there remains a lack of integration of planning and policy concerns, such as stakeholder engagement and quantitative feasibility assessment, and the majority of research focuses on a specific type of infrastructure, with an absence of work beyond individual economic sectors. To enable solutions to be implemented into real-world infrastructure systems, research will need to move away from a siloed perspective and adopt a more interdisciplinary perspective that considers the increasing interconnectedness of these systems

    A systematic review of machine-learning solutions in anaerobic digestion

    Get PDF
    The use of machine learning (ML) in anaerobic digestion (AD) is growing in popularity and improves the interpretation of complex system parameters for better operation and optimisation. This systematic literature review aims to explore how ML is currently employed in AD, with particular attention to the challenges of implementation and the benefits of integrating ML techniques. While both lab and industry-scale datasets have been used for model training, challenges arise from varied system designs and the different monitoring equipment used. Traditional machine-learning techniques, predominantly artificial neural networks (ANN), are the most commonly used but face difficulties in scalability and interpretability. Specifically, models trained on lab-scale data often struggle to generalize to full-scale, real-world operations due to the complexity and variability in bacterial communities and system operations. In practical scenarios, machine learning can be employed in real-time operations for predictive modelling, ensuring system stability is maintained, resulting in improved efficiency of both biogas production and waste treatment processes. Through reviewing the ML techniques employed in wider applied domains, potential future research opportunities in addressing these challenges have been identified

    Environmental odour management by artificial neural network – A review

    Get PDF
    Unwanted odour emissions are considered air pollutants that may cause detrimental impacts to the environment as well as an indicator of unhealthy air to the affected individuals resulting in annoyance and health related issues. These pollutants are challenging to handle due to their invisibility to the naked eye and can only be felt by the human olfactory stimuli. A strategy to address this issue is by introducing an intelligent processing system to odour monitoring instrument such as artificial neural network to achieve a robust result. In this paper, a review on the application of artificial neural network for the management of environmental odours is presented. The principal factors in developing an optimum artificial neural network were identified as elements, structure and learning algorithms. The management of environmental odour has been distinguished into four aspects such as measurement, characterization, control and treatment and continuous monitoring. For each aspect, the performance of the neural network is critically evaluated emphasizing the strengths and weaknesses. This work aims to address the scarcity of information by addressing the gaps from existing studies in terms of the selection of the most suitable configuration, the benefits and consequences. Adopting this technique could provide a new avenue in the management of environmental odours through the use of a powerful mathematical computing tool for a more efficient and reliable outcome. Keywords: Electronic nose, Environmental pollution, Human health, Odour emission, Public concer
    • …
    corecore