3,892 research outputs found

    Video Storytelling: Textual Summaries for Events

    Full text link
    Bridging vision and natural language is a longstanding goal in computer vision and multimedia research. While earlier works focus on generating a single-sentence description for visual content, recent works have studied paragraph generation. In this work, we introduce the problem of video storytelling, which aims at generating coherent and succinct stories for long videos. Video storytelling introduces new challenges, mainly due to the diversity of the story and the length and complexity of the video. We propose novel methods to address the challenges. First, we propose a context-aware framework for multimodal embedding learning, where we design a Residual Bidirectional Recurrent Neural Network to leverage contextual information from past and future. Second, we propose a Narrator model to discover the underlying storyline. The Narrator is formulated as a reinforcement learning agent which is trained by directly optimizing the textual metric of the generated story. We evaluate our method on the Video Story dataset, a new dataset that we have collected to enable the study. We compare our method with multiple state-of-the-art baselines, and show that our method achieves better performance, in terms of quantitative measures and user study.Comment: Published in IEEE Transactions on Multimedi

    Event Representations for Automated Story Generation with Deep Neural Nets

    Full text link
    Automated story generation is the problem of automatically selecting a sequence of events, actions, or words that can be told as a story. We seek to develop a system that can generate stories by learning everything it needs to know from textual story corpora. To date, recurrent neural networks that learn language models at character, word, or sentence levels have had little success generating coherent stories. We explore the question of event representations that provide a mid-level of abstraction between words and sentences in order to retain the semantic information of the original data while minimizing event sparsity. We present a technique for preprocessing textual story data into event sequences. We then present a technique for automated story generation whereby we decompose the problem into the generation of successive events (event2event) and the generation of natural language sentences from events (event2sentence). We give empirical results comparing different event representations and their effects on event successor generation and the translation of events to natural language.Comment: Submitted to AAAI'1

    Hierarchically Structured Reinforcement Learning for Topically Coherent Visual Story Generation

    Full text link
    We propose a hierarchically structured reinforcement learning approach to address the challenges of planning for generating coherent multi-sentence stories for the visual storytelling task. Within our framework, the task of generating a story given a sequence of images is divided across a two-level hierarchical decoder. The high-level decoder constructs a plan by generating a semantic concept (i.e., topic) for each image in sequence. The low-level decoder generates a sentence for each image using a semantic compositional network, which effectively grounds the sentence generation conditioned on the topic. The two decoders are jointly trained end-to-end using reinforcement learning. We evaluate our model on the visual storytelling (VIST) dataset. Empirical results from both automatic and human evaluations demonstrate that the proposed hierarchically structured reinforced training achieves significantly better performance compared to a strong flat deep reinforcement learning baseline.Comment: Accepted to AAAI 201

    Hierarchically-Attentive RNN for Album Summarization and Storytelling

    Full text link
    We address the problem of end-to-end visual storytelling. Given a photo album, our model first selects the most representative (summary) photos, and then composes a natural language story for the album. For this task, we make use of the Visual Storytelling dataset and a model composed of three hierarchically-attentive Recurrent Neural Nets (RNNs) to: encode the album photos, select representative (summary) photos, and compose the story. Automatic and human evaluations show our model achieves better performance on selection, generation, and retrieval than baselines.Comment: To appear at EMNLP-2017 (7 pages

    Variational recurrent sequence-to-sequence retrieval for stepwise illustration

    Get PDF
    We address and formalise the task of sequence-to-sequence (seq2seq) cross-modal retrieval. Given a sequence of text passages as query, the goal is to retrieve a sequence of images that best describes and aligns with the query. This new task extends the traditional cross-modal retrieval, where each image-text pair is treated independently ignoring broader context. We propose a novel variational recurrent seq2seq (VRSS) retrieval model for this seq2seq task. Unlike most cross-modal methods, we generate an image vector corresponding to the latent topic obtained from combining the text semantics and context. This synthetic image embedding point associated with every text embedding point can then be employed for either image generation or image retrieval as desired. We evaluate the model for the application of stepwise illustration of recipes, where a sequence of relevant images are retrieved to best match the steps described in the text. To this end, we build and release a new Stepwise Recipe dataset for research purposes, containing 10K recipes (sequences of image-text pairs) having a total of 67K image-text pairs. To our knowledge, it is the first publicly available dataset to offer rich semantic descriptions in a focused category such as food or recipes. Our model is shown to outperform several competitive and relevant baselines in the experiments. We also provide qualitative analysis of how semantically meaningful the results produced by our model are through human evaluation and comparison with relevant existing methods

    Explaining Recurrent Neural Network Predictions in Sentiment Analysis

    Full text link
    Recently, a technique called Layer-wise Relevance Propagation (LRP) was shown to deliver insightful explanations in the form of input space relevances for understanding feed-forward neural network classification decisions. In the present work, we extend the usage of LRP to recurrent neural networks. We propose a specific propagation rule applicable to multiplicative connections as they arise in recurrent network architectures such as LSTMs and GRUs. We apply our technique to a word-based bi-directional LSTM model on a five-class sentiment prediction task, and evaluate the resulting LRP relevances both qualitatively and quantitatively, obtaining better results than a gradient-based related method which was used in previous work.Comment: 9 pages, 4 figures, accepted for EMNLP'17 Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA
    corecore