8,125 research outputs found

    DeepTransport: Learning Spatial-Temporal Dependency for Traffic Condition Forecasting

    Full text link
    Predicting traffic conditions has been recently explored as a way to relieve traffic congestion. Several pioneering approaches have been proposed based on traffic observations of the target location as well as its adjacent regions, but they obtain somewhat limited accuracy due to lack of mining road topology. To address the effect attenuation problem, we propose to take account of the traffic of surrounding locations(wider than adjacent range). We propose an end-to-end framework called DeepTransport, in which Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are utilized to obtain spatial-temporal traffic information within a transport network topology. In addition, attention mechanism is introduced to align spatial and temporal information. Moreover, we constructed and released a real-world large traffic condition dataset with 5-minute resolution. Our experiments on this dataset demonstrate our method captures the complex relationship in temporal and spatial domain. It significantly outperforms traditional statistical methods and a state-of-the-art deep learning method

    DDP-GCN: Multi-Graph Convolutional Network for Spatiotemporal Traffic Forecasting

    Full text link
    Traffic speed forecasting is one of the core problems in Intelligent Transportation Systems. For a more accurate prediction, recent studies started using not only the temporal speed patterns but also the spatial information on the road network through the graph convolutional networks. Even though the road network is highly complex due to its non-Euclidean and directional characteristics, previous approaches mainly focus on modeling the spatial dependencies only with the distance. In this paper, we identify two essential spatial dependencies in traffic forecasting in addition to distance, direction and positional relationship, for designing basic graph elements as the smallest building blocks. Using the building blocks, we suggest DDP-GCN (Distance, Direction, and Positional relationship Graph Convolutional Network) to incorporate the three spatial relationships into prediction network for traffic forecasting. We evaluate the proposed model with two large-scale real-world datasets, and find 7.40% average improvement for 1-hour forecasting in highly complex urban networks

    Epidemiological Prediction using Deep Learning

    Get PDF
    Department of Mathematical SciencesAccurate and real-time epidemic disease prediction plays a significant role in the health system and is of great importance for policy making, vaccine distribution and disease control. From the SIR model by Mckendrick and Kermack in the early 1900s, researchers have developed a various mathematical model to forecast the spread of disease. With all attempt, however, the epidemic prediction has always been an ongoing scientific issue due to the limitation that the current model lacks flexibility or shows poor performance. Owing to the temporal and spatial aspect of epidemiological data, the problem fits into the category of time-series forecasting. To capture both aspects of the data, this paper proposes a combination of recent Deep Leaning models and applies the model to ILI (influenza like illness) data in the United States. Specifically, the graph convolutional network (GCN) model is used to capture the geographical feature of the U.S. regions and the gated recurrent unit (GRU) model is used to capture the temporal dynamics of ILI. The result was compared with the Deep Learning model proposed by other researchers, demonstrating the proposed model outperforms the previous methods.clos

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity Analysis

    Full text link
    Traffic prediction is one of the key elements to ensure the safety and convenience of citizens. Existing traffic prediction models primarily focus on deep learning architectures to capture spatial and temporal correlation. They often overlook the underlying nature of traffic. Specifically, the sensor networks in most traffic datasets do not accurately represent the actual road network exploited by vehicles, failing to provide insights into the traffic patterns in urban activities. To overcome these limitations, we propose an improved traffic prediction method based on graph convolution deep learning algorithms. We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns. Despite making minimal modifications to the conventional graph convolutional recurrent networks and graph convolutional transformer architectures, our approach achieves state-of-the-art performance without introducing excessive computational overhead.Comment: CIKM 202
    corecore