25 research outputs found

    Recurrent DNNs and its Ensembles on the TIMIT Phone Recognition Task

    Full text link
    In this paper, we have investigated recurrent deep neural networks (DNNs) in combination with regularization techniques as dropout, zoneout, and regularization post-layer. As a benchmark, we chose the TIMIT phone recognition task due to its popularity and broad availability in the community. It also simulates a low-resource scenario that is helpful in minor languages. Also, we prefer the phone recognition task because it is much more sensitive to an acoustic model quality than a large vocabulary continuous speech recognition task. In recent years, recurrent DNNs pushed the error rates in automatic speech recognition down. But, there was no clear winner in proposed architectures. The dropout was used as the regularization technique in most cases, but combination with other regularization techniques together with model ensembles was omitted. However, just an ensemble of recurrent DNNs performed best and achieved an average phone error rate from 10 experiments 14.84 % (minimum 14.69 %) on core test set that is slightly lower then the best-published PER to date, according to our knowledge. Finally, in contrast of the most papers, we published the open-source scripts to easily replicate the results and to help continue the development.Comment: Submitted to SPECOM 2018, 20th International Conference on Speech and Compute

    Spoken command recognition for robotics

    Get PDF
    In this thesis, I investigate spoken command recognition technology for robotics. While high robustness is expected, the distant and noisy conditions in which the system has to operate make the task very challenging. Unlike commercial systems which all rely on a "wake-up" word to initiate the interaction, the pipeline proposed here directly detect and recognizes commands from the continuous audio stream. In order to keep the task manageable despite low-resource conditions, I propose to focus on a limited set of commands, thus trading off flexibility of the system against robustness. Domain and speaker adaptation strategies based on a multi-task regularization paradigm are first explored. More precisely, two different methods are proposed which rely on a tied loss function which penalizes the distance between the output of several networks. The first method considers each speaker or domain as a task. A canonical task-independent network is jointly trained with task-dependent models, allowing both types of networks to improve by learning from one another. While an improvement of 3.2% on the frame error rate (FER) of the task-independent network is obtained, this only partially carried over to the phone error rate (PER), with 1.5% of improvement. Similarly, a second method explored the parallel training of the canonical network with a privileged model having access to i-vectors. This method proved less effective with only 1.2% of improvement on the FER. In order to make the developed technology more accessible, I also investigated the use of a sequence-to-sequence (S2S) architecture for command classification. The use of an attention-based encoder-decoder model reduced the classification error by 40% relative to a strong convolutional neural network (CNN)-hidden Markov model (HMM) baseline, showing the relevance of S2S architectures in such context. In order to improve the flexibility of the trained system, I also explored strategies for few-shot learning, which allow to extend the set of commands with minimum requirements in terms of data. Retraining a model on the combination of original and new commands, I managed to achieve 40.5% of accuracy on the new commands with only 10 examples for each of them. This scores goes up to 81.5% of accuracy with a larger set of 100 examples per new command. An alternative strategy, based on model adaptation achieved even better scores, with 68.8% and 88.4% of accuracy with 10 and 100 examples respectively, while being faster to train. This high performance is obtained at the expense of the original categories though, on which the accuracy deteriorated. Those results are very promising as the methods allow to easily extend an existing S2S model with minimal resources. Finally, a full spoken command recognition system (named iCubrec) has been developed for the iCub platform. The pipeline relies on a voice activity detection (VAD) system to propose a fully hand-free experience. By segmenting only regions that are likely to contain commands, the VAD module also allows to reduce greatly the computational cost of the pipeline. Command candidates are then passed to the deep neural network (DNN)-HMM command recognition system for transcription. The VoCub dataset has been specifically gathered to train a DNN-based acoustic model for our task. Through multi-condition training with the CHiME4 dataset, an accuracy of 94.5% is reached on VoCub test set. A filler model, complemented by a rejection mechanism based on a confidence score, is finally added to the system to reject non-command speech in a live demonstration of the system

    Speech recognition with probabilistic transcriptions and end-to-end systems using deep learning

    Get PDF
    In this thesis, we develop deep learning models in automatic speech recognition (ASR) for two contrasting tasks characterized by the amounts of labeled data available for training. In the first half, we deal with scenarios when there are limited or no labeled data for training ASR systems. This situation is commonly prevalent in languages which are under-resourced. However, in the second half, we train ASR systems with large amounts of labeled data in English. Our objective is to improve modern end-to-end (E2E) ASR using attention modeling. Thus, the two primary contributions of this thesis are the following: Cross-Lingual Speech Recognition in Under-Resourced Scenarios: A well-resourced language is a language with an abundance of resources to support the development of speech technology. Those resources are usually defined in terms of 100+ hours of speech data, corresponding transcriptions, pronunciation dictionaries, and language models. In contrast, an under-resourced language lacks one or more of these resources. The most expensive and time-consuming resource is the acquisition of transcriptions due to the difficulty in finding native transcribers. The first part of the thesis proposes methods by which deep neural networks (DNNs) can be trained when there are limited or no transcribed data in the target language. Such scenarios are common for languages which are under-resourced. Two key components of this proposition are Transfer Learning and Crowdsourcing. Through these methods, we demonstrate that it is possible to borrow statistical knowledge of acoustics from a variety of other well-resourced languages to learn the parameters of a the DNN in the target under-resourced language. In particular, we use well-resourced languages as cross-entropy regularizers to improve the generalization capacity of the target language. A key accomplishment of this study is that it is the first to train DNNs using noisy labels in the target language transcribed by non-native speakers available in online marketplaces. End-to-End Large Vocabulary Automatic Speech Recognition: Recent advances in ASR have been mostly due to the advent of deep learning models. Such models have the ability to discover complex non-linear relationships between attributes that are usually found in real-world tasks. Despite these advances, building a conventional ASR system is a cumbersome procedure since it involves optimizing several components separately in a disjoint fashion. To alleviate this problem, modern ASR systems have adopted a new approach of directly transducing speech signals to text. Such systems are known as E2E systems and one such system is the Connectionist Temporal Classification (CTC). However, one drawback of CTC is the hard alignment problem as it relies only on the current input to generate the current output. In reality, the output at the current time is influenced not only by the current input but also by inputs in the past and the future. Thus, the second part of the thesis proposes advancing state-of-the-art E2E speech recognition for large corpora by directly incorporating attention modeling within the CTC framework. In attention modeling, inputs in the current, past, and future are distinctively weighted depending on the degree of influence they exert on the current output. We accomplish this by deriving new context vectors using time convolution features to model attention as part of the CTC network. To further improve attention modeling, we extract more reliable content information from a network representing an implicit language model. Finally, we used vector based attention weights that are applied on context vectors across both time and their individual components. A key accomplishment of this study is that it is the first to incorporate attention directly within the CTC network. Furthermore, we show that our proposed attention-based CTC model, even in the absence of an explicit language model, is able to achieve lower word error rates than a well-trained conventional ASR system equipped with a strong external language model

    Biologically inspired methods in speech recognition and synthesis: closing the loop

    Get PDF
    Current state-of-the-art approaches to computational speech recognition and synthesis are based on statistical analyses of extremely large data sets. It is currently unknown how these methods relate to the methods that the human brain uses to perceive and produce speech. In this thesis, I present a conceptual model, Sermo, which describes some of the computations that the human brain uses to perceive and produce speech. I then implement three large-scale brain models that accomplish tasks theorized to be required by Sermo, drawing upon techniques in automatic speech recognition, articulatory speech synthesis, and computational neuroscience. The first model extracts features from an audio signal by performing a frequency decomposition with an auditory periphery model, then decorrelating the information in that power spectrum with methods commonly used in audio and image compression. I show that the features produced by this model implemented with biologically plausible spiking neurons can be used to classify phones in pre-segmented speech with significantly better accuracy than the features typically used in automatic speech recognition systems. Additionally, I show that this model can be used to compare auditory periphery models in terms of their ability to support phone classification of pre-segmented speech. The second model uses a symbol-like neural representation of a sequence of syllables to generate a trajectory of premotor commands that can be used to control an articulatory synthesizer. I show that the model can produce trajectories up to several seconds in length from a static syllable sequence representation that result in intelligible synthesized speech. The trajectories reflect the high temporal variability of human speech, and smoothly transition between successive syllables, even in rapid utterances. The third model classifies syllables from a trajectory of premotor commands. I show that the model is able to classify syllables online despite high temporal variability, and can produce the same syllable representations used by the second model. These two models can be connected in future work in order to implement a closed-loop sensorimotor speech system. Unlike current computational approaches, all three of these models are implemented with biologically plausible spiking neurons, which can be simulated with neuromorphic hardware, and can interface naturally with artificial cochleas. All models are shown to scale to the level of adult human vocabularies in terms of the neural resources required, though limitations on their performance as a result of scaling will be discussed

    Continual deep learning via progressive learning

    Get PDF
    Machine learning is one of several approaches to artificial intelligence. It allows us to build machines that can learn from experience as opposed to being explicitly programmed. Current machine learning formulations are mostly designed for learning and performing a particular task from a tabula rasa using data available for that task. For machine learning to converge to artificial intelligence, in addition to other desiderata, it must be in a state of continual learning, i.e., have the ability to be in a continuous learning process, such that when a new task is presented, the system can leverage prior knowledge from prior tasks, in learning and performing this new task, and augment the prior knowledge with the newly acquired knowledge without having a significant adverse effect on the prior knowledge. Continual learning is key to advancing machine learning and artificial intelligence. Deep learning is a powerful general-purpose approach to machine learning that is able to solve numerous and various tasks with minimal modification. Deep learning extends machine learning, and specially neural networks, to learn multiple levels of distributed representations together with the required mapping function into a single composite function. The emergence of deep learning and neural networks as a generic approach to machine learning, coupled with their ability to learn versatile hierarchical representations, has paved the way for continual learning. The main aim of this thesis is the study and development of a structured approach to continual learning, leveraging the success of deep learning and neural networks. This thesis studies the application of deep learning to a number of supervised learning tasks, and in particular, classification tasks in machine perception, e.g., image recognition, automatic speech recognition, and speech emotion recognition. The relation between the systems developed for these tasks is investigated to illuminate the layer-wise relevance of features in deep networks trained for these tasks via transfer learning, and these independent systems are unified into continual learning systems. The main contribution of this thesis is the construction and formulation of a deep learning framework, denoted progressive learning, that allows a holistic and systematic approach to continual learning. Progressive learning comprises a number of procedures that address the continual learning desiderata. It is shown that, when tasks are related, progressive learning leads to faster learning that converges to better generalization performance using less amounts of data and a smaller number of dedicated parameters, for the tasks studied in this thesis, by accumulating and leveraging knowledge learned across tasks in a continuous manner. It is envisioned that progressive learning is a step towards a fully general continual learning framework

    Features of hearing: applications of machine learning to uncover the building blocks of hearing

    Get PDF
    Recent advances in machine learning have instigated a renewed interest in using machine learning approaches to better understand human sensory processing. This line of research is particularly interesting for speech research since speech comprehension is uniquely human, which complicates obtaining detailed neural recordings. In this thesis, I explore how machine learning can be used to uncover new knowledge about the auditory system, with a focus on discovering robust auditory features. The resulting increased understanding of the noise robustness of human hearing may help to better assist those with hearing loss and improve Automatic Speech Recognition (ASR) systems. First, I show how computational neuroscience and machine learning can be combined to generate hypotheses about auditory features. I introduce a neural feature detection model with a modest number of parameters that is compatible with auditory physiology. By testing feature detector variants in a speech classification task, I confirm the importance of both well-studied and lesser-known auditory features. Second, I investigate whether ASR software is a good candidate model of the human auditory system. By comparing several state-of-the-art ASR systems to the results from humans on a range of psychometric experiments, I show that these ASR systems diverge markedly from humans in at least some psychometric tests. This implies that none of these systems act as a strong proxy for human speech recognition, although some may be useful when asking more narrowly defined questions. For neuroscientists, this thesis exemplifies how machine learning can be used to generate new hypotheses about human hearing, while also highlighting the caveats of investigating systems that may work fundamentally differently from the human brain. For machine learning engineers, I point to tangible directions for improving ASR systems. To motivate the continued cross-fertilization between these fields, a toolbox that allows researchers to assess new ASR systems has been released.Open Acces
    corecore