221 research outputs found

    Adaptive saccade controller inspired by the primates' cerebellum

    Get PDF
    Saccades are fast eye movements that allow humans and robots to bring the visual target in the center of the visual field. Saccades are open loop with respect to the vision system, thus their execution require a precise knowledge of the internal model of the oculomotor system. In this work, we modeled the saccade control, taking inspiration from the recurrent loops between the cerebellum and the brainstem. In this model, the brainstem acts as a fixed-inverse model of the oculomotor system, while the cerebellum acts as an adaptive element that learns the internal model of the oculomotor system. The adaptive filter is implemented using a state-of-the-art neural network, called I-SSGPR. The proposed approach, namely recurrent architecture, was validated through experiments performed both in simulation and on an antropomorphic robotic head. Moreover, we compared the recurrent architecture with another model of the cerebellum, the feedback error learning. Achieved results show that the recurrent architecture outperforms the feedback error learning in terms of accuracy and insensitivity to the choice of the feedback controller

    Adaptive saccade controller inspired by the primates' cerebellum

    Get PDF
    Saccades are fast eye movements that allow humans and robots to bring the visual target in the center of the visual field. Saccades are open loop with respect to the vision system, thus their execution require a precise knowledge of the internal model of the oculomotor system. In this work, we modeled the saccade control, taking inspiration from the recurrent loops between the cerebellum and the brainstem. In this model, the brainstem acts as a fixed-inverse model of the oculomotor system, while the cerebellum acts as an adaptive element that learns the internal model of the oculomotor system. The adaptive filter is implemented using a state-of-the-art neural network, called I-SSGPR. The proposed approach, namely recurrent architecture, was validated through experiments performed both in simulation and on an antropomorphic robotic head. Moreover, we compared the recurrent architecture with another model of the cerebellum, the feedback error learning. Achieved results show that the recurrent architecture outperforms the feedback error learning in terms of accuracy and insensitivity to the choice of the feedback controller

    The cerebellum could solve the motor error problem through error increase prediction

    Get PDF
    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error problem. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.Comment: 34 pages (without bibliography), 13 figure

    Learning the visual–oculomotor transformation: effects on saccade control and space representation

    Get PDF
    Active eye movements can be exploited to build a visuomotor representation of the surrounding environment. Maintaining and improving such representation requires to update the internal model involved in the generation of eye movements. From this perspective, action and perception are thus tightly coupled and interdependent. In this work, we encoded the internal model for oculomotor control with an adaptive filter inspired by the functionality of the cerebellum. Recurrent loops between a feed-back controller and the internal model allow our system to perform accurate binocular saccades and create an implicit representation of the nearby space. Simulation results show that this recurrent architecture outperforms classical feedback-error-learning in terms of both accuracy and sensitivity to system parameters. The proposed approach was validated implementing the framework on an anthropomorphic robotic head

    The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics

    Get PDF
    Chapter 10 The Robot Vibrissal System: Understanding Mammalian Sensorimotor Co-ordination Through Biomimetics Tony J. Prescott, Ben Mitchinson, Nathan F. Lepora, Stuart P. Wilson, Sean R. Anderson, John Porrill, Paul Dean, Charles ..

    Analysis and Simulation of Cerebellar Circuitry

    Get PDF
    The cerebellum, a fist-sized structure of the brain, plays a crucial part in the execution and coordination of motor control tasks and cognitive activities. It is also remarkably able to adapt itself to new tasks and circumstances whenever errors in motor output are made. Over the years, valuable insight on cerebellar functionality has been gained through the application of concepts traditionally associated with control theory. In this thesis, neural spike train data recorded from cerebellar neurons at rest under in vivo conditions were examined. The goal is to give an initial characterization of the spike firing properties of such neurons, using statistical point process theory. The findings indicate that the distributions of inter-spike intervals are skewed, and often could be approximated with either a gamma distribution or a lognormal distribution. Furthermore, it is found that several spike trains could be reasonably treated as renewal processes, while others require more complex description of their inter-spike interval dependency. Secondly, a Matlab model was developed to simulate a structure of cerebellar contribution to motor control of the vestibulo-ocular reflex. The cerebellar output is feedforwarded to a linear model of the oculomotor plant. A comparison between head velocity and eye velocity serving as a teaching signal to the cerebellum enables it to alter its functionality to better compensate for head movements. A simulation of a cerebellar circuitry output reveals that feedforwarding of the cerebellar output to the oculomotor plant through learning is able to improve the control performance, and offers a plausible explanation for motor control of the vestibulo-ocular reflex

    Adaptive filters and internal models: Multilevel description of cerebellar function

    Get PDF
    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections.Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically.We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure.This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles. © 2012 Elsevier Ltd

    Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models

    Get PDF
    The exact role of the cerebellum in motor control and learning is not yet fully understood. The structure, connectivity and plasticity within cerebellar cortex has been extensively studied, but the patterns of connectivity and interaction with other brain structures, and the computational significance of these patterns, is less well known and a matter of debate. Two contrasting models of the role of the cerebellum in motor adaptation have previously been proposed. Most commonly, the cerebellum is employed in a purely feedforward pathway, with its output contributing directly to the outgoing motor command. The cerebellum must then learn an inverse model of the motor apparatus in order to achieve accurate control. More recently, Porrill et al. (Proc Biol Sci 271(1541):789–796, 2004) and Porrill et al. (PLoS Comput Biol 3:1935–1950, 2007a) and Porrill et al. (Neural Comput 19(1), 170–193, 2007b) have highlighted the potential importance of these recurrent connections by proposing an alternative architecture in which the cerebellum is embedded in a recurrent loop with brainstem control circuitry. In this framework, the feedforward connections are not necessary at all. The cerebellum must learn a forward model of the motor apparatus for accurate motor commands to be generated. We show here how these two models exhibit contrasting yet complimentary learning capabilities. Central to the differences in performance between architectures is that there are two distinct kinds of disturbance to which a motor system may need to adapt (1) changes in the relationship between the motor command and the observed outcome and (2) changes in the relationship between the stimulus and the desired outcome. The computational distinction between these two kinds of transformation is subtle and has therefore often been overlooked. However, the implications for learning turn out to be significant: learning with a feedforward architecture is robust following changes in the stimulus-desired outcome mapping but not necessarily the motor command-outcome mapping, while learning with a recurrent architecture is robust under changes in the motor command-outcome mapping but not necessarily the stimulus-desired outcome mapping. We first analyse these differences theoretically and through simulations in the vestibulo-ocular reflex (VOR), then illustrate how these same concepts apply more generally with a model of reaching movements
    • …
    corecore