918 research outputs found

    The zero forcing polynomial of a graph

    Full text link
    Zero forcing is an iterative graph coloring process, where given a set of initially colored vertices, a colored vertex with a single uncolored neighbor causes that neighbor to become colored. A zero forcing set is a set of initially colored vertices which causes the entire graph to eventually become colored. In this paper, we study the counting problem associated with zero forcing. We introduce the zero forcing polynomial of a graph GG of order nn as the polynomial Z(G;x)=i=1nz(G;i)xi\mathcal{Z}(G;x)=\sum_{i=1}^n z(G;i) x^i, where z(G;i)z(G;i) is the number of zero forcing sets of GG of size ii. We characterize the extremal coefficients of Z(G;x)\mathcal{Z}(G;x), derive closed form expressions for the zero forcing polynomials of several families of graphs, and explore various structural properties of Z(G;x)\mathcal{Z}(G;x), including multiplicativity, unimodality, and uniqueness.Comment: 23 page

    Q-systems, Heaps, Paths and Cluster Positivity

    Full text link
    We consider the cluster algebra associated to the QQ-system for ArA_r as a tool for relating QQ-system solutions to all possible sets of initial data. We show that the conserved quantities of the QQ-system are partition functions for hard particles on particular target graphs with weights, which are determined by the choice of initial data. This allows us to interpret the simplest solutions of the Q-system as generating functions for Viennot's heaps on these target graphs, and equivalently as generating functions of weighted paths on suitable dual target graphs. The generating functions take the form of finite continued fractions. In this setting, the cluster mutations correspond to local rearrangements of the fractions which leave their final value unchanged. Finally, the general solutions of the QQ-system are interpreted as partition functions for strongly non-intersecting families of lattice paths on target lattices. This expresses all cluster variables as manifestly positive Laurent polynomials of any initial data, thus proving the cluster positivity conjecture for the ArA_r QQ-system. We also give an alternative formulation in terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure

    Jack polynomials and orientability generating series of maps

    Full text link
    We study Jack characters, which are the coefficients of the power-sum expansion of Jack symmetric functions with a suitable normalization. These quantities have been introduced by Lassalle who formulated some challenging conjectures about them. We conjecture existence of a weight on non-oriented maps (i.e., graphs drawn on non-oriented surfaces) which allows to express any given Jack character as a weighted sum of some simple functions indexed by maps. We provide a candidate for this weight which gives a positive answer to our conjecture in some, but unfortunately not all, cases. In particular, it gives a positive answer for Jack characters specialized on Young diagrams of rectangular shape. This candidate weight attempts to measure, in a sense, the non-orientability of a given map.Comment: v2: change of title, substantial changes of the content v3: substantial changes in the presentatio

    Effective Scalar Products for D-finite Symmetric Functions

    Get PDF
    Many combinatorial generating functions can be expressed as combinations of symmetric functions, or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel's work by providing algorithms that compute differential equations these generating functions satisfy in the case they are given as a scalar product of symmetric functions in Gessel's class. Examples of applications to k-regular graphs and Young tableaux with repeated entries are given. Asymptotic estimates are a natural application of our method, which we illustrate on the same model of Young tableaux. We also derive a seemingly new formula for the Kronecker product of the sum of Schur functions with itself.Comment: 51 pages, full paper version of FPSAC 02 extended abstract; v2: corrections from original submission, improved clarity; now formatted for journal + bibliograph

    Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers

    Full text link
    We elaborate on the recent idea of a direct decomposition of Feynman integrals onto a basis of master integrals on maximal cuts using intersection numbers. We begin by showing an application of the method to the derivation of contiguity relations for special functions, such as the Euler beta function, the Gauss 2F1{}_2F_1 hypergeometric function, and the Appell F1F_1 function. Then, we apply the new method to decompose Feynman integrals whose maximal cuts admit 1-form integral representations, including examples that have from two to an arbitrary number of loops, and/or from zero to an arbitrary number of legs. Direct constructions of differential equations and dimensional recurrence relations for Feynman integrals are also discussed. We present two novel approaches to decomposition-by-intersections in cases where the maximal cuts admit a 2-form integral representation, with a view towards the extension of the formalism to nn-form representations. The decomposition formulae computed through the use of intersection numbers are directly verified to agree with the ones obtained using integration-by-parts identities.Comment: 115 pages, 29 figures; references added; additional examples added; matches published versio

    (D+1)(D+1)-Colored Graphs - a Review of Sundry Properties

    Get PDF
    We review the combinatorial, topological, algebraic and metric properties supported by (D+1)(D+1)-colored graphs, with a focus on those that are pertinent to the study of tensor model theories. We show how to extract a limiting continuum metric space from this set of graphs and detail properties of this limit through the calculation of exponents at criticality
    corecore