16,974 research outputs found

    A Fast Algorithm for the Inversion of Quasiseparable Vandermonde-like Matrices

    Get PDF
    The results on Vandermonde-like matrices were introduced as a generalization of polynomial Vandermonde matrices, and the displacement structure of these matrices was used to derive an inversion formula. In this paper we first present a fast Gaussian elimination algorithm for the polynomial Vandermonde-like matrices. Later we use the said algorithm to derive fast inversion algorithms for quasiseparable, semiseparable and well-free Vandermonde-like matrices having O(n2)\mathcal{O}(n^2) complexity. To do so we identify structures of displacement operators in terms of generators and the recurrence relations(2-term and 3-term) between the columns of the basis transformation matrices for quasiseparable, semiseparable and well-free polynomials. Finally we present an O(n2)\mathcal{O}(n^2) algorithm to compute the inversion of quasiseparable Vandermonde-like matrices

    Eigenstructure of order-one-quasiseparable matrices. Three-term and two-term recurrence relations

    Get PDF
    AbstractThis paper presents explicit formulas and algorithms to compute the eigenvalues and eigenvectors of order-one-quasiseparable matrices. Various recursive relations for characteristic polynomials of their principal submatrices are derived. The cost of evaluating the characteristic polynomial of an N×N matrix and its derivative is only O(N). This leads immediately to several versions of a fast quasiseparable Newton iteration algorithm. In the Hermitian case we extend the Sturm property to the characteristic polynomials of order-one-quasiseparable matrices which yields to several versions of a fast quasiseparable bisection algorithm.Conditions guaranteeing that an eigenvalue of a order-one-quasiseparable matrix is simple are obtained, and an explicit formula for the corresponding eigenvector is derived. The method is further extended to the case when these conditions are not fulfilled. Several particular examples with tridiagonal, (almost) unitary Hessenberg, and Toeplitz matrices are considered.The algorithms are based on new three-term and two-term recurrence relations for the characteristic polynomials of principal submatrices of order-one-quasiseparable matrices R. It turns out that the latter new class of polynomials generalizes and includes two classical families: (i) polynomials orthogonal on the real line (that play a crucial role in a number of classical algorithms in numerical linear algebra), and (ii) the Szegö polynomials (that play a significant role in signal processing). Moreover, new formulas can be seen as generalizations of the classical three-term recurrence relations for the real orthogonal polynomials and of the two-term recurrence relations for the Szegö polynomials

    Computing minimal interpolation bases

    Get PDF
    International audienceWe consider the problem of computing univariate polynomial matrices over afield that represent minimal solution bases for a general interpolationproblem, some forms of which are the vector M-Pad\'e approximation problem in[Van Barel and Bultheel, Numerical Algorithms 3, 1992] and the rationalinterpolation problem in [Beckermann and Labahn, SIAM J. Matrix Anal. Appl. 22,2000]. Particular instances of this problem include the bivariate interpolationsteps of Guruswami-Sudan hard-decision and K\"otter-Vardy soft-decisiondecodings of Reed-Solomon codes, the multivariate interpolation step oflist-decoding of folded Reed-Solomon codes, and Hermite-Pad\'e approximation. In the mentioned references, the problem is solved using iterative algorithmsbased on recurrence relations. Here, we discuss a fast, divide-and-conquerversion of this recurrence, taking advantage of fast matrix computations overthe scalars and over the polynomials. This new algorithm is deterministic, andfor computing shifted minimal bases of relations between mm vectors of sizeσ\sigma it uses O (mω1(σ+s))O~( m^{\omega-1} (\sigma + |s|) ) field operations, whereω\omega is the exponent of matrix multiplication, and s|s| is the sum of theentries of the input shift ss, with min(s)=0\min(s) = 0. This complexity boundimproves in particular on earlier algorithms in the case of bivariateinterpolation for soft decoding, while matching fastest existing algorithms forsimultaneous Hermite-Pad\'e approximation

    Fast algorithm for border bases of Artinian Gorenstein algebras

    Get PDF
    Given a multi-index sequence σ\sigma, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ\sigma. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kerne lII\sigma of the Hankel operator $H$\sigma associated to σ\sigma. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra AA\sigmaassociatedtothesequence associated to the sequence \sigma yields the structure of the terms $\sigma\alphaforall for all α\alpha \in N n.Thisstructureisexplicitlygivenbyaborderbasisof. This structure is explicitly given by a border basis of Aσ\sigma,whichispresentedasaquotientofthepolynomialring, which is presented as a quotient of the polynomial ring K[x 1 ,. .. , xn]bythekernel] by the kernel Iσ\sigmaoftheHankeloperator of the Hankel operator Hσ\sigma.Thealgorithmprovidesgeneratorsof. The algorithm provides generators of Iσ\sigmaconstitutingaborderbasis,pairwiseorthogonalbasesof constituting a border basis, pairwise orthogonal bases of Aσ\sigma$ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm
    corecore