12,453 research outputs found

    Two-Particle Circular Billiards Versus Randomly Perturbed One-Particle Circular Billiards

    Full text link
    We study a two-particle circular billiard containing two finite-size circular particles that collide elastically with the billiard boundary and with each other. Such a two-particle circular billiard provides a clean example of an "intermittent" system. This billiard system behaves chaotically, but the time scale on which chaos manifests can become arbitrarily long as the sizes of the confined particles become smaller. The finite-time dynamics of this system depends on the relative frequencies of (chaotic) particle-particle collisions versus (integrable) particle-boundary collisions, and investigating these dynamics is computationally intensive because of the long time scales involved. To help improve understanding of such two-particle dynamics, we compare the results of diagnostics used to measure chaotic dynamics for a two-particle circular billiard with those computed for two types of one-particle circular billiards in which a confined particle undergoes random perturbations. Importantly, such one-particle approximations are much less computationally demanding than the original two-particle system, and we expect them to yield reasonable estimates of the extent of chaotic behavior in the two-particle system when the sizes of confined particles are small. Our computations of recurrence-rate coefficients, finite-time Lyapunov exponents, and autocorrelation coefficients support this hypothesis and suggest that studying randomly perturbed one-particle billiards has the potential to yield insights into the aggregate properties of two-particle billiards, which are difficult to investigate directly without enormous computation times (especially when the sizes of the confined particles are small).Comment: 9 pages, 7 figures (some with multiple parts); published in Chao

    Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems

    Full text link
    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an equivalent isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) in which the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, widely regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.Comment: Main document: 17 pages, Supplement: 21 pages Presented at OEE2: The Second Workshop on Open-Ended Evolution, 15th International Conference on the Synthesis and Simulation of Living Systems (ALIFE XV), Canc\'un, Mexico, 4-8 July 2016 (http://www.tim-taylor.com/oee2/

    A novel Recurrence-Transience transition and Tracy-Widom growth in a cellular automaton with quenched noise

    Full text link
    We study the growing patterns formed by a deterministic cellular automaton, the rotor-router model, in the presence of quenched noise. By the detailed study of two cases, we show that: (a) the boundary of the pattern displays KPZ fluctuations with a Tracy-Widom distribution, (b) as one increases the amount of randomness, the rotor-router path undergoes a transition from a recurrent to a transient walk. This transition is analysed here for the first time, and it is shown that it falls in the 3D Anisotropic Directed Percolation universality class.Comment: 6 pages + 8 pages SI, updated version with some correction

    Strong stochastic stability for non-uniformly expanding maps

    Full text link
    We consider random perturbations of discrete-time dynamical systems. We give sufficient conditions for the stochastic stability of certain classes of maps, in a strong sense. This improves the main result in J. F. Alves, V. Araujo, Random perturbations of non-uniformly expanding maps, Asterisque 286 (2003), 25--62, where it was proved the convergence of the stationary measures of the random process to the SRB measure of the initial system in the weak* topology. Here, under slightly weaker assumptions on the random perturbations, we obtain a stronger version of stochastic stability: convergence of the densities of the stationary measures to the density of the SRB measure of the unperturbed system in the L1-norm. As an application of our results we obtain strong stochastic stability for two classes of non-uniformly expanding maps. The first one is an open class of local diffeomorphisms introduced in J. F. Alves, C. Bonatti, M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math. 140 (2000), 351--398, and the second one the class of Viana maps.Comment: 43 page
    corecore