1,300 research outputs found

    Multi-Step Processing of Spatial Joins

    Get PDF
    Spatial joins are one of the most important operations for combining spatial objects of several relations. In this paper, spatial join processing is studied in detail for extended spatial objects in twodimensional data space. We present an approach for spatial join processing that is based on three steps. First, a spatial join is performed on the minimum bounding rectangles of the objects returning a set of candidates. Various approaches for accelerating this step of join processing have been examined at the last year’s conference [BKS 93a]. In this paper, we focus on the problem how to compute the answers from the set of candidates which is handled by the following two steps. First of all, sophisticated approximations are used to identify answers as well as to filter out false hits from the set of candidates. For this purpose, we investigate various types of conservative and progressive approximations. In the last step, the exact geometry of the remaining candidates has to be tested against the join predicate. The time required for computing spatial join predicates can essentially be reduced when objects are adequately organized in main memory. In our approach, objects are first decomposed into simple components which are exclusively organized by a main-memory resident spatial data structure. Overall, we present a complete approach of spatial join processing on complex spatial objects. The performance of the individual steps of our approach is evaluated with data sets from real cartographic applications. The results show that our approach reduces the total execution time of the spatial join by factors

    Set Estimation Under Biconvexity Restrictions

    Full text link
    A set in the Euclidean plane is said to be biconvex if, for some angle θ∈[0,π/2)\theta\in[0,\pi/2), all its sections along straight lines with inclination angles θ\theta and θ+π/2\theta+\pi/2 are convex sets (i.e, empty sets or segments). Biconvexity is a natural notion with some useful applications in optimization theory. It has also be independently used, under the name of "rectilinear convexity", in computational geometry. We are concerned here with the problem of asymptotically reconstructing (or estimating) a biconvex set SS from a random sample of points drawn on SS. By analogy with the classical convex case, one would like to define the "biconvex hull" of the sample points as a natural estimator for SS. However, as previously pointed out by several authors, the notion of "hull" for a given set AA (understood as the "minimal" set including AA and having the required property) has no obvious, useful translation to the biconvex case. This is in sharp contrast with the well-known elementary definition of convex hull. Thus, we have selected the most commonly accepted notion of "biconvex hull" (often called "rectilinear convex hull"): we first provide additional motivations for this definition, proving some useful relations with other convexity-related notions. Then, we prove some results concerning the consistent approximation of a biconvex set SS and and the corresponding biconvex hull. An analogous result is also provided for the boundaries. A method to approximate, from a sample of points on SS, the biconvexity angle θ\theta is also given

    On the Oß-hull of a planar point set

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We study the Oß-hull of a planar point set, a generalization of the Orthogonal Convex Hull where the coordinate axes form an angle ß. Given a set P of n points in the plane, we show how to maintain the Oß-hull of P while ß runs from 0 to p in T(n log n) time and O(n) space. With the same complexity, we also find the values of ß that maximize the area and the perimeter of the Oß-hull and, furthermore, we find the value of ß achieving the best fitting of the point set P with a two-joint chain of alternate interior angle ß.Peer ReviewedPostprint (author's final draft

    The performance of object decomposition techniques for spatial query processing

    Get PDF
    • …
    corecore