119 research outputs found

    Topological Stability of Kinetic kk-Centers

    Get PDF
    We study the kk-center problem in a kinetic setting: given a set of continuously moving points PP in the plane, determine a set of kk (moving) disks that cover PP at every time step, such that the disks are as small as possible at any point in time. Whereas the optimal solution over time may exhibit discontinuous changes, many practical applications require the solution to be stable: the disks must move smoothly over time. Existing results on this problem require the disks to move with a bounded speed, but this model is very hard to work with. Hence, the results are limited and offer little theoretical insight. Instead, we study the topological stability of kk-centers. Topological stability was recently introduced and simply requires the solution to change continuously, but may do so arbitrarily fast. We prove upper and lower bounds on the ratio between the radii of an optimal but unstable solution and the radii of a topologically stable solution---the topological stability ratio---considering various metrics and various optimization criteria. For k=2k = 2 we provide tight bounds, and for small k>2k > 2 we can obtain nontrivial lower and upper bounds. Finally, we provide an algorithm to compute the topological stability ratio in polynomial time for constant kk

    Kinetic Euclidean 2-centers in the black-box model

    Get PDF
    We study the 2-center problem for moving points in the plane. Given a set P of n points, the Euclidean 2-center problem asks for two congruent disks of minimum size that together cover P. Our methods work in the black-box KDS model, where we receive the locations of the points at regular time steps and we know an upper bound d_max on the maximum displacement of any point within one time step. We show how to maintain a (1 + e)-approximation of the Euclidean 2-center in amortized sub-linear time per time step, under certain assumptions on the distribution of the point set P. In many cases --namely when the distance between the centers of the disks is relatively large or relatively small-- the solution we maintain is actually optimal

    Covering Points by Disjoint Boxes with Outliers

    Get PDF
    For a set of n points in the plane, we consider the axis--aligned (p,k)-Box Covering problem: Find p axis-aligned, pairwise-disjoint boxes that together contain n-k points. In this paper, we consider the boxes to be either squares or rectangles, and we want to minimize the area of the largest box. For general p we show that the problem is NP-hard for both squares and rectangles. For a small, fixed number p, we give algorithms that find the solution in the following running times: For squares we have O(n+k log k) time for p=1, and O(n log n+k^p log^p k time for p = 2,3. For rectangles we get O(n + k^3) for p = 1 and O(n log n+k^{2+p} log^{p-1} k) time for p = 2,3. In all cases, our algorithms use O(n) space.Comment: updated version: - changed problem from 'cover exactly n-k points' to 'cover at least n-k points' to avoid having non-feasible solutions. Results are unchanged. - added Proof to Lemma 11, clarified some sections - corrected typos and small errors - updated affiliations of two author

    Cache-Oblivious Selection in Sorted X+Y Matrices

    Full text link
    Let X[0..n-1] and Y[0..m-1] be two sorted arrays, and define the mxn matrix A by A[j][i]=X[i]+Y[j]. Frederickson and Johnson gave an efficient algorithm for selecting the k-th smallest element from A. We show how to make this algorithm IO-efficient. Our cache-oblivious algorithm performs O((m+n)/B) IOs, where B is the block size of memory transfers

    On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k

    Get PDF
    We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in O?(n^{3/2}) time. - We prove a lower bound of ?(n^{4/3-?}) for rectilinear discrete 3-center in 4D, for any constant ? > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in O?(n^{8/5}) time. We also prove a lower bound of ?(n^{3/2-?}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is O?(n^{7/4}). - We prove a lower bound of ?(n^{2-?}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of O?(n^?), if the matrix multiplication exponent ? is equal to 2. - We similarly prove an ?(n^{k-?}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ? 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ? = 2. - We also prove an ?(n^{2-?}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound

    Algorithmic and Combinatorial Results in Selection and Computational Geometry

    Get PDF
    This dissertation investigates two sets of algorithmic and combinatorial problems. Thefirst part focuses on the selection problem under the pairwise comparison model. For the classic “median of medians” scheme, contrary to the popular belief that smaller group sizes cause superlinear behavior, several new linear time algorithms that utilize small groups are introduced. Then the exact number of comparisons needed for an optimal selection algorithm is studied. In particular, the implications of a long standing conjecture known as Yao’s hypothesis are explored. For the multiparty model, we designed low communication complexity protocols for selecting an exact or an approximate median of data that is distributed among multiple players. In the second part, three computational geometry problems are studied. For the longestspanning tree with neighborhoods, approximation algorithms are provided. For the stretch factor of polygonal chains, upper bounds are proved and almost matching lower bound constructions in \mathbb{R}^2 and higher dimensions are developed. For the piercing number τ and independence number ν of a family of axis-parallel rectangles in the plane, a lower bound construction for ν = 4 that matches Wegner’s conjecture is analyzed. The previous matching construction for ν = 3, due to Wegner himself, dates back to 1968
    • …
    corecore