1,670 research outputs found

    Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

    Get PDF
    Given a rectilinear domain P of h pairwise-disjoint rectilinear obstacles with a total of n vertices in the plane, we study the problem of computing bicriteria rectilinear shortest paths between two points s and t in P. Three types of bicriteria rectilinear paths are considered: minimum-link shortest paths, shortest minimum-link paths, and minimum-cost paths where the cost of a path is a non-decreasing function of both the number of edges and the length of the path. The one-point and two-point path queries are also considered. Algorithms for these problems have been given previously. Our contributions are threefold. First, we find a critical error in all previous algorithms. Second, we correct the error in a not-so-trivial way. Third, we further improve the algorithms so that they are even faster than the previous (incorrect) algorithms when h is relatively small. For example, for computing a minimum-link shortest s-t path, the previous algorithm runs in O(n log^{3/2} n) time while the time of our new algorithm is O(n + h log^{3/2} h)

    Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

    Get PDF
    We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of nn vertices and hh holes. We introduce a \emph{graph of oriented distances} to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in min{O(nω),O(n2+nhlogh+χ2)}\min \{\,O(n^\omega), O(n^2 + nh \log h + \chi^2)\,\} time, where ω<2.373\omega<2.373 denotes the matrix multiplication exponent and χΩ(n)O(n2)\chi\in \Omega(n)\cap O(n^2) is the number of edges of the graph of oriented distances. We also provide a faster algorithm for computing the diameter that runs in O(n2logn)O(n^2 \log n) time

    Planar rectilinear shortest path computation using corridors

    Get PDF
    AbstractThe rectilinear shortest path problem can be stated as follows: given a set of m non-intersecting simple polygonal obstacles in the plane, find a shortest L1-metric (rectilinear) path from a point s to a point t that avoids all the obstacles. The path can touch an obstacle but does not cross it. This paper presents an algorithm with time complexity O(n+m(lgn)3/2), which is close to the known lower bound of Ω(n+mlgm) for finding such a path. Here, n is the number of vertices of all the obstacles together

    Shortest path queries in rectilinear worlds

    Get PDF

    A discretization result for some optimization problems in framework spaces with polyhedral obstacles and the Manhattan metric

    Get PDF
    In this work we consider the shortest path problem and the single facility Weber location problem in any real space of finite dimension where there exist different types of polyhedral obstacles or forbidden regions. These regions are polyhedral sets and the metric considered in the space is the Manhattan metric. We present a result that reduce these continuous problems into problems in a “add hoc” graph, where the original problems can be solved using elementary techniques of Graph Theory. We show that, fixed the dimension of the space, both the reduction and the resolution can be done in polynomial time.Ministerio de Economía and CompetitividadFondo Europeo de Desarrollo Regiona
    corecore