3,089 research outputs found

    Rectenna for high-voltage applications

    Get PDF
    An energy transfer system is disclosed. The system includes patch elements, shielding layers, and energy rectifying circuits. The patch elements receive and couple radio frequency energy. The shielding layer includes at least one opening that allows radio frequency energy to pass through. The openings are formed and positioned to receive the radio frequency energy and to minimize any re-radiating back toward the source of energy. The energy rectifying circuit includes a circuit for rectifying the radio frequency energy into dc energy. A plurality of energy rectifying circuits is arranged in an array to provide a sum of dc energy generated by the energy rectifying circuit

    Rectifying antenna and method of manufacture

    Get PDF
    In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element

    Development of Multi-Oscillating Water Columns as Wave Energy Converters

    Get PDF
    Wave energy development continues to advance in order to capture the immense ocean energy available globally. A large number of wave energy conversion concepts have been developed and researched to date but we are still not able to see a convergence of technologies. This provides the requirement and additional opportunity for further research. This paper provides a review and discusses the development of the OWC concept of wave energy converters in general and the evolved variation of the M-OWC more specifically. The review outlines the increased potential of the M-OWC concept and its current state through its advancement in recent years. Although still under development the M-OWCs have the potential to provide promising results, through the various innovative concepts under consideration, and support the progression and further development of wave energy as another serious contender in the renewables energy mix

    Electrically Small Huygens Antenna-Based Fully-Integrated Wireless Power Transfer and Communication System

    Full text link
    © 2013 IEEE. This paper introduces the first reported electrically small Huygens dual-functional wireless power transfer (WPT) and communication system operating in the 915-MHz ISM band. It is realized by the seamless combination of a Huygens linearly polarized (HLP) antenna and a highly efficient HLP rectenna. The configuration consists of two orthogonally oriented HLP subsystems. Each one intrinsically combines two pairs of metamaterial-inspired near-field resonant parasitic elements, i.e., an Egyptian axe dipole (EAD) and a capacitively loaded loop (CLL). Through the development of a very tightly coupled feed subsystem that includes the WPT mode's rectifier circuit and the communications mode's feedline while preserving their isolation, the independent operation of both functions is facilitated in an electrically small volume ( ka < 0.77 ). The measured results of its fabricated prototype agree well with their simulated values. The communications mode antenna resonates at 910 MHz and radiates a cardioid-shaped Huygens pattern with the peak gain of 2.7 dBi. The Huygens-based WPT rectenna achieves an 87.2% peak ac-to-dc conversion efficiency at 907 MHz. The dual-functional system is an ideal candidate for many emerging Internet-of-Things (IoT) wireless applications that require simultaneous wireless information and power transfer (SWIPT) and wirelessly powered communications (WPC)
    • …
    corecore