515 research outputs found

    Approximating Geometric Knapsack via L-packings

    Full text link
    We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. In this paper, we break the 2 approximation barrier, achieving a polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to (558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work on 2DK approximation packs items inside a constant number of rectangular containers, where items inside each container are packed using a simple greedy strategy. We deviate for the first time from this setting: we show that there exists a large profit solution where items are packed inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which contains items that are high and narrow and items that are wide and thin. As a second major and the main algorithmic contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful in future work in geometric packing problems. We also consider the variant of the problem with rotations (2DKR), where items can be rotated by 90 degrees. Also, in this case, the best-known polynomial-time approximation factor (even for the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2 + \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the cardinality case.Comment: 64pages, full version of FOCS 2017 pape

    On the Complexity of Anchored Rectangle Packing

    Get PDF

    A Constant Factor Approximation Algorithm for Unsplittable Flow on Paths

    Get PDF
    In the unsplittable flow problem on a path, we are given a capacitated path PP and nn tasks, each task having a demand, a profit, and start and end vertices. The goal is to compute a maximum profit set of tasks, such that for each edge ee of PP, the total demand of selected tasks that use ee does not exceed the capacity of ee. This is a well-studied problem that has been studied under alternative names, such as resource allocation, bandwidth allocation, resource constrained scheduling, temporal knapsack and interval packing. We present a polynomial time constant-factor approximation algorithm for this problem. This improves on the previous best known approximation ratio of O(logn)O(\log n). The approximation ratio of our algorithm is 7+ϵ7+\epsilon for any ϵ>0\epsilon>0. We introduce several novel algorithmic techniques, which might be of independent interest: a framework which reduces the problem to instances with a bounded range of capacities, and a new geometrically inspired dynamic program which solves a special case of the maximum weight independent set of rectangles problem to optimality. In the setting of resource augmentation, wherein the capacities can be slightly violated, we give a (2+ϵ)(2+\epsilon)-approximation algorithm. In addition, we show that the problem is strongly NP-hard even if all edge capacities are equal and all demands are either~1,~2, or~3.Comment: 37 pages, 5 figures Version 2 contains the same results as version 1, but the presentation has been greatly revised and improved. References have been adde

    On the Two-Dimensional Knapsack Problem for Convex Polygons

    Get PDF
    We study the two-dimensional geometric knapsack problem for convex polygons. Given a set of weighted convex polygons and a square knapsack, the goal is to select the most profitable subset of the given polygons that fits non-overlappingly into the knapsack. We allow to rotate the polygons by arbitrary angles. We present a quasi-polynomial time O(1)-approximation algorithm for the general case and a polynomial time O(1)-approximation algorithm if all input polygons are triangles, both assuming polynomially bounded integral input data. Also, we give a quasi-polynomial time algorithm that computes a solution of optimal weight under resource augmentation, i.e., we allow to increase the size of the knapsack by a factor of 1+? for some ? > 0 but compare ourselves with the optimal solution for the original knapsack. To the best of our knowledge, these are the first results for two-dimensional geometric knapsack in which the input objects are more general than axis-parallel rectangles or circles and in which the input polygons can be rotated by arbitrary angles

    Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack

    Get PDF
    The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+epsilon)-approximations in f(k,epsilon)n^O(1) time where k is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability: - In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA\u2705]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook and Chuzhoy, SODA\u2709] and it admits a QPTAS [Adamaszek and Wiese, FOCS\u2713; Chuzhoy and Ene, FOCS\u2716]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant epsilon>0 and integer k>0, in time f(k,epsilon)n^g(epsilon), either outputs a solution of size at least k/(1+epsilon), or declares that the optimum solution has size less than k. - In the (2-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is 2+epsilon [Jansen and Zhang, SODA\u2704]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA\u2715]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR. For all considered problems, getting time f(k,epsilon)n^O(1), rather than f(k,epsilon)n^g(epsilon), would give FPT time f\u27(k)n^O(1) exact algorithms by setting epsilon=1/(k+1), contradicting W[1]-hardness. Instead, for each fixed epsilon>0, our PASs give (1+epsilon)-approximate solutions in FPT time. For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take n^g(epsilon) time and return a subset of at most k^g(epsilon) rectangles/items that contains a solution of size at least k/(1+epsilon) if a solution of size k exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC\u2717]

    Approximation Algorithms for Round-UFP and Round-SAP

    Get PDF
    We study Round-UFP and Round-SAP, two generalizations of the classical Bin Packing problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of jobs where for each job we are given a demand and a subpath. In Round-UFP, the goal is to find a packing of all jobs into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of jobs on any edge does not exceed the capacity of the respective edge. In Round-SAP, the jobs are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to Bin Packing, both problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic (2+?)-approximations for both problems. For the general case, we obtain an O(log log n)-approximation algorithm and an O(log log 1/?)-approximation under (1+?)-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum job demand is at most the minimum edge capacity), we obtain an absolute 12- and an asymptotic (16+?)-approximation algorithm for Round-UFP and Round-SAP, respectively

    A parameterized approximation scheme for the 2D-Knapsack problem with wide items

    Full text link
    We study a natural geometric variant of the classic Knapsack problem called 2D-Knapsack: we are given a set of axis-parallel rectangles and a rectangular bounding box, and the goal is to pack as many of these rectangles inside the box without overlap. Naturally, this problem is NP-complete. Recently, Grandoni et al. [ESA'19] showed that it is also W[1]-hard when parameterized by the size kk of the sought packing, and they presented a parameterized approximation scheme (PAS) for the variant where we are allowed to rotate the rectangles by 90{\textdegree} before packing them into the box. Obtaining a PAS for the original 2D-Knapsack problem, without rotation, appears to be a challenging open question. In this work, we make progress towards this goal by showing a PAS under the following assumptions: - both the box and all the input rectangles have integral, polynomially bounded sidelengths; - every input rectangle is wide -- its width is greater than its height; and - the aspect ratio of the box is bounded by a constant.Our approximation scheme relies on a mix of various parameterized and approximation techniques, including color coding, rounding, and searching for a structured near-optimum packing using dynamic programming
    corecore