49 research outputs found

    Les mécanismes synaptiques et intrinsèques qui sous-tendent l’activité des cellules réticulospinales (RS) en réponse à une stimulation sensorielle de type cutané chez la lamproie

    Get PDF
    Chez diverses espèces animales, les informations sensorielles peuvent déclencher la locomotion. Ceci nécessite l’intégration des informations sensorielles par le système nerveux central. Chez la lamproie, les réseaux locomoteurs spinaux sont activés et contrôlés par les cellules réticulospinales (RS), système descendant le plus important. Ces cellules reçoivent des informations variées provenant notamment de la périphérie. Une fois activées par une brève stimulation cutanée d’intensité suffisante, les cellules RS produisent des dépolarisations soutenues de durées variées impliquant des propriétés intrinsèques calcium-dépendantes et associées à l’induction de la nage de fuite. Au cours de ce doctorat, nous avons voulu savoir si les afférences synaptiques ont une influence sur la durée des dépolarisations soutenues et si l’ensemble des cellules RS partagent des propriétés d’intégration similaires, impliquant possiblement les réserves de calcium internes. Dans un premier temps, nous montrons pour la première fois qu’en plus de dépendre des propriétés intrinsèques des cellules réticulospinales, les dépolarisations soutenues dépendent des afférences excitatrices glutamatergiques, incluant les afférences spinales, pour perdurer pendant de longues périodes de temps. Les afférences cutanées ne participent pas au maintien des dépolarisations soutenues et les afférences inhibitrices glycinergique et GABAergiques ne sont pas suffisantes pour les arrêter. Dans un deuxième temps, nous montrons que suite à une stimulation cutanée, l’ensemble des cellules RS localisées dans les quatre noyaux réticulés possèdent un patron d’activation similaire et elles peuvent toutes produire des dépolarisations soutenues dont le maintien ne dépend pas des réserves de calcium internes. Enfin, les résultats obtenus durant ce doctorat ont permis de mieux comprendre les mécanismes cellulaires par lesquels l’ensemble des cellules RS intègrent une brève information sensorielle et la transforment en une réponse soutenue associée à une commande motrice.In various animal species, sensory information can initiate locomotion. This relies on the integration of sensory inputs by the central nervous system. In lampreys, the spinal locomotor networks are activated and controlled by the reticulospinal cells (RS) which constitute the main descending system. In turn, RS cells receive information coming from various synaptic inputs such as the sensory afferents. Once activated by a brief cutaneous stimulation of sufficient strength, RS cells display sustained depolarizations of various durations that rely on calcium-dependant intrinsic properties and lead to the onset of escape swimming. During the course of this Ph.D, we aimed at determining whether synaptic inputs can modulate the duration of the sustained depolarizations and if the different populations of RS cells share the same integrative properties, possibly involving the internal calcium stores. First, our results show for the first time that excitatory glutamatergic inputs, including ascending spinal feedback, contribute to prolong the sustained depolarizations for long periods of time. Cutaneous inputs do not contribute to maintain the sustained depolarizations and inhibitory glycinergic and GABAergic inputs are not sufficient to stop them. Second, we show that in response to cutaneous stimulation, the RS located in the four reticular nuclei display a similar activation pattern and can all produce sustained depolarizations which do not depend on internal calcium release to be maintained. Finally, the results obtained during this Ph.D allowed us to better understand the cellular mechanisms by which the RS cells integrate and transform a brief sensory information into a sustained response associated with a motor command

    Spinobulbar Neurons in Lamprey: Cellular Properties and Synaptic Interactions

    Get PDF
    An in vitro preparation of the nervous system of the lamprey, a lower vertebrate, was used to characterize the properties of spinal neurons with axons projecting to the brain stem [i.e., spinobulbar (SB) neurons)]. To identify SB neurons, extracellular electrodes on each side of the spinal cord near the obex recorded the axonal spikes of neurons impaled with sharp intracellular microelectrodes in the rostral spinal cord. The ascending spinal neurons (n = 144) included those with ipsilateral (iSB) (63/144), contralateral (cSB) (77/144), or bilateral (bSB) (4/144) axonal projections to the brain stem. Intracellular injection of biocytin revealed that the SB neurons had small- to medium-size somata and most had dendrites confined to the ipsilateral side of the cord, although about half of the cSB neurons also had contralateral dendrites. Most SB neurons had multiple axonal branches including descending axons. Electrophysiologically, the SB neurons were similar to other lamprey spinal neurons, firing spikes throughout long depolarizing pulses with some spike-frequency adaptation. Paired intracellular recordings between SB and reticulospinal (RS) neurons revealed that SB neurons made either excitatory or inhibitory synapses on RS neurons and the SB neurons received excitatory input from RS neurons. Mutual excitation and feedback inhibition between pairs of RS and SB neurons were observed. The SB neurons also received excitatory inputs from primary mechanosensory neurons (dorsal cells), and these same SB neurons were rhythmically active during fictive swimming, indicating that SB neurons convey both sensory and locomotor network information to the brain stem

    Functional contribution of the mesencephalic locomotor region to locomotion

    Get PDF
    Parce qu'il est naturel et facile de marcher, il peut sembler que cet acte soit produit aussi facilement qu'il est accompli. Au contraire, la locomotion nécessite une interaction neurale complexe entre les neurones supraspinaux, spinaux et périphériques pour obtenir une locomotion fluide et adaptée à l'environnement. La région locomotrice mésencéphalique (MLR) est un centre locomoteur supraspinal situé dans le tronc cérébral qui a notamment pour rôle d'initier la locomotion et d'induire une transition entre les allures locomotrices. Cependant, bien que cette région ait initialement été identifiée comme le noyau cunéiforme (CnF), un groupe de neurones glutamatergiques, et le noyau pédonculopontin (PPN), un groupe de neurones glutamatergiques et cholinergiques, son corrélat anatomique est encore un sujet de débat. Et alors qu'il a été prouvé que, que ce soit lors d’une stimulation de la MLR ou pour augmenter la vitesse locomotrice, la plupart des quadrupèdes présentent un large éventail d'allures locomotrices allant de la marche, au trot, jusqu’au galop, la gamme exacte des allures locomotrices chez la souris est encore inconnue. Ici, en utilisant l'analyse cinématique, nous avons d'abord décidé d'identifier d’évaluer les allures locomotrices des souris C57BL / 6. Sur la base de la symétrie de la démarche et du couplage inter-membres, nous avons identifié et caractérisé 8 allures utilisées à travers un continuum de fréquences locomotrices allant de la marche au trot puis galopant avec différents sous-types d'allures allant du plus lent au plus rapide. Certaines allures sont apparues comme attractrices d’autres sont apparues comme transitionnelles. En utilisant une analyse graphique, nous avons également démontré que les transitions entre les allures n'étaient pas aléatoires mais entièrement prévisibles. Nous avons ensuite décidé d'analyser et de caractériser les contributions fonctionnelles des populations neuronales de CnF et PPN au contrôle locomoteur. En utilisant des souris transgéniques exprimant une opsine répondant à la lumière dans les neurones glutamatergiques (Glut) ou cholinergiques (CHAT), nous avons photostimulé (ou photo-inhibé) les neurones glutamatergiques du CnF ou du PPN ou les neurones cholinergiques du PPN. Nous avons découvert que les neurones glutamatergiques du CnF initient et modulent l’allure locomotrice et accélèrent le rythme, tandis que les neurones glutamatergiques et cholinergiques du PPN le ralentissent. En initiant, modulant et en accélérant la locomotion, notre étude identifie et caractérise des populations neuronales distinctes de la MLR. Définir et décrire en profondeur la MLR semble d’autant plus urgent qu’elle est devenue récemment une cible pour traiter les symptômes survenant après une lésion de la moelle épinière ou liés à la maladie de Parkinson.Because it is natural and easy to walk, it could seem that this act is produced as easily as it is accomplished. On the contrary, locomotion requires an intricate and complex neural interaction between the supraspinal, spinal and peripheric neurons to obtain a locomotion that is smooth and adapted to the environment. The Mesencephalic Locomotor Region (MLR) is a supraspinal brainstem locomotor center that has the particular role of initiating locomotion and inducing a transition between locomotor gaits. However, although this region was initially identified as the cuneiform nucleus (CnF), a cluster of glutamatergic neurons, and the pedunculopontine nucleus (PPN), a cluster of glutamatergic and cholinergic neurons, its anatomical correlate is still a matter of debate. And while it is proven that, either under MLR stimulation or in order to increase locomotor speed, most quadrupeds exhibit a wide range of locomotor gaits from walk, to trot, to gallop, the exact range of locomotor gaits in the mouse is still unknown. Here, using kinematic analysis we first decided to identify to assess locomotor gaits C57BL/6 mice. Based on the symmetry of the gait and the inter-limb coupling, we identified and characterized 8 gaits during locomotion displayed through a continuum of locomotor frequencies, ranging from walk to trot and then to gallop with various sub-types of gaits at the slowest and highest speeds that appeared as attractors or transitional gaits. Using graph analysis, we also demonstrated that transitions between gaits were not random but entirely predictable. Then we decided to analyze and characterize the functional contributions of the CnF and PPN’s neuronal populations to locomotor control. Using transgenic mice expressing opsin in either glutamatergic (Glut) or cholinergic (CHAT) neurons, we photostimulated (or photoinhibited) glutamatergic neurons of the CnF or PPN or cholinergic neurons of the PPN. We discovered that glutamatergic CnF neurons initiate and modulate the locomotor pattern, and accelerate the rhythm, while glutamatergic and cholinergic PPN neurons decelerate it. By initiating, modulating, and accelerating locomotion, our study identifies and characterizes distinct neuronal populations of the MLR. Describing and defining thoroughly the MLR seems all the more urgent since it has recently become a target for spinal cord injury and Parkinson’s disease treatment

    From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander

    Get PDF
    The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal "central pattern generators" for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the swimming, limbless lamprey, we present a model of the basic oscillatory network in the salamander spinal cord, the spinal segment. Model neurons are of the Hodgkin-Huxley type. Spinal hemisegments contain sparsely connected excitatory and inhibitory neuron populations, and are coupled to a contralateral hemisegment. The model yields a large range of experimental findings, especially the NMDA-induced oscillations observed in isolated axial hemisegments and segments of the salamander Pleurodeles waltlii. The model reproduces most of the effects of the blockade of AMPA synapses, glycinergic synapses, calcium-activated potassium current, persistent sodium current, and -current. Driving segments with a population of brainstem neurons yields fast oscillations in the in vivo swimming frequency range. A minimal modification to the conductances involved in burst-termination yields the slower stepping frequency range. Slow oscillators can impose their frequency on fast oscillators, as is likely the case during gait transitions from swimming to stepping. Our study shows that a lamprey-like network can potentially serve as a building block of axial and limb oscillators for swimming and stepping in salamanders

    Organisation et modulation du réseau neuronal de la respiration chez la lamproie

    Full text link
    Les mécanismes neuronaux contrôlant la respiration sont présentement explorés à l’aide de plusieurs modèles animaux incluant le rat et la grenouille. Nous avons utilisé la lamproie comme modèle animal nous permettant de caractériser les réseaux de neurones du tronc cérébral qui génèrent et modulent le rythme respiratoire. Nous avons d’abord caractérisé une nouvelle population de neurones, dans le groupe respiratoire paratrigéminal (pTRG), une région du tronc cérébral essentielle à la genèse du rythme respiratoire chez la lamproie. Les neurones de cette région sont actifs en phase avec le rythme respiratoire. Nous avons montré que ces neurones possèdent une arborisation axonale complexe, incluant des projections bilatérales vers les groupes de motoneurones du tronc cérébral qui activent les branchies ainsi que des connexions reliant les pTRG de chaque côté du tronc cérébral. Ces résultats montrent que le pTRG contient un groupe de cellules qui active les motoneurones respiratoires des deux côtés et qui pourrait être impliqué dans la synchronisation bilatérale du rythme respiratoire. Nous avons ensuite étudié les mécanismes neuronaux par lesquels le rythme respiratoire est augmenté en lien avec l’effort physique. Nous avons montré que la région locomotrice du mésencéphale (MLR), en plus de son rôle dans la locomotion, active les centres respiratoires pendant la nage, et même en anticipation. Les neurones de la MLR projetant vers les centres locomoteurs et respiratoires sont ségrégés anatomiquement, les neurones localisés plus dorsalement étant ceux qui possèdent des projections vers les centres respiratoires. Nous avons aboli la contribution de la partie dorsale de la MLR aux changements respiratoires en injectant des bloqueurs des récepteurs glutamatergiques localement, sur des préparations semi-intactes. Nous avons montré que lors d’épisodes de nage, une majeure partie de l’effet respiratoire est abolie par ces injections, suggérant un rôle prépondérant des neurones de cette région dans l’augmentation respiratoire pendant la locomotion. Nos résultats confirment que le rythme respiratoire est généré par une région rostrolatérale du pons de la lamproie et montrent que des connexions des centres locomoteurs arrivent directement à cette région et pourraient être impliquées dans l’augmentation respiratoire reliée à l’effort physique.The neural control of breathing is currently investigated on multiple animal models such as frogs and rats. We have used the lamprey as an experimental model to characterize the brainstem neural networks involved in the genesis and modulation of the respiratory rhythm. We have first characterized a new population of respiratory neurons in the paratrigeminal respiratory group (pTRG). The pTRG is a region that was shown to be essential to respiratory rhythmogenesis in lampreys. We have shown that the pTRG contains a group of neurons with complex axonal arborisations, including bilateral projections to the motoneuron pools of the brainstem that activate gills, as well as bilateral projections connecting the pTRGs on the two sides of the brainstem. These results suggest that pTRG neurons could participate in the descending control of respiratory motoneurons as well as the bilateral synchrony of the respiratory rhythm. We have then studied the neural mechanisms by which respiration is increased during locomotion. We have shown that the mesencephalic locomotor region (MLR), in addition to its role in controlling locomotion, also increases breathing during locomotion. Neurons in the MLR are anatomically segregated, those projecting to the respiratory centers being located more dorsally. We have abolished the contribution of the dorsal part of the MLR to respiratory changes by injecting glutamate receptor blockers locally in semi-intact preparations. We have shown that during swimming episodes, a major part of the respiratory effect is dependent on the dorsal part of the MLR. Our results confirm that the respiratory rhythm is generated by a rostrolateral region in the pons of lampreys and show that connections from locomotor centers can directly activate this region. These connections could be implicated in the increase of breathing activity related to locomotion

    The development and neuromodulation of motor control systems in pro-metamorphic Xenopus laevis frog tadpoles

    Get PDF
    My thesis has accomplished 3 significant contributions to neuroscience. Firstly, I have discovered a novel example of vertebrate deep-brain photoreception. Spontaneously generated fictive locomotion from the isolated nervous system of pro-metamorphic Xenopus tadpoles is sensitive to the ambient light conditions, despite input from the classical photoreceptive tissues of the retina and pineal complex being absent. The photosensitivity is found to be tuned to short wavelength UV light and is localised to a small region of the caudal diencephalon. Within this region, I have discovered a population of neurons immuno-positive for a UV-specific opsin protein, suggesting they are the means of phototransduction. This may be a hitherto overlooked mechanism linking environmental luminance to motor behaviour. Secondly, I have advanced the collective knowledge of how both nitric oxide and dopamine contribute to neuromodulation within motor control systems. Nitric oxide is shown to have an excitatory effect on the occurrence of spontaneous locomotor activity, representing a switch in its role from earlier in Xenopus development. Moreover, this excitatory effect is found to be mediated in the brainstem despite nitric oxide being shown to depolarise spinal neurons. Thirdly, I have developed a new preparation for patch-clamp recording in pro-metamorphic Xenopus tadpoles. My data suggest there are several changes to the cellular properties of neurons in the older animals compared with the embryonic tadpole; there appears to be an addition of Ih and K[sub](Ca) channels and the presence of tonically active and intrinsically rhythmogenic neurons. In addition, I have shown that at low doses dopamine acts via D2-like to hyperpolarise the membrane potential of spinal neurons, while at higher doses dopamine depolarises spinal neurons. These initial data corroborate previously reported evidence that dopamine has opposing effects on motor output via differential activation of dopamine receptor subtypes in Xenopus tadpoles

    Organization of brain and spinal cord locomotor networks in larval lamprey

    Get PDF
    The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Title from title screen of research.pdf file (viewed on April 27, 2009)Vita.Thesis (Ph.D.) University of Missouri-Columbia 2006.In vertebrates, brain locomotor command systems activate spinal central pattern generators (CPGs) to initiate locomotor behavior. The size and pharmacology of brain command systems are unknown, and the movements that result from these command systems have not been investigated. In addition, it is uncertain whether reciprocal coupling between right and left spinal locomotor networks is necessary for rhythmogenesis or primarily for phasing of locomotor activity. In the present study, in semi-intact preparations from larval lamprey, stimulation in brain locomotor areas evokes swimming. In in vitro preparations, brain locomotor areas are confined to discrete areas of the brain and their pharmacology is similar to that of other vertebrates. These results suggest that the organization of the lamprey locomotor command system is similar to that in "higher" vertebrates. In separate experiments, results from in vitro preparations and whole animals demonstrated that reciprocal coupling in the spinal cord is necessary for rhythmogenesis.Includes bibliographical reference

    Identification of Hindbrain Neural Substrates for Motor Initiation in the hatchling Xenopus laevis Tadpole

    Get PDF
    Animal survival profoundly depends on the ability to detect stimuli in the environment, process them and respond accordingly. In this respect, motor responses to a sensory stimulation evolved into a variety of coordinated movements, which involve the control of brain centres over spinal locomotor circuits. The hatchling Xenopus tadpole, even in its embryonic stage, is able to detect external sensory information and to swim away if the stimulus is considered noxious. To do so, the tadpole relies on well-known ascending sensory pathway, which carries the sensory information to the brain. When the stimulus is strong enough, descending interneurons are activated, leading to the excitation of spinal CPG neurons, which causes the undulatory movement of swimming. However, the activation of descending interneurons that marks the initiation of motor response appears after a long delay from the sensory stimulation. Furthermore, the long-latency response is variable in time, as observed in the slow-summating excitation measured in descending interneurons. These two features, i.e. long-latency and variability, cannot be explained by the firing time and pattern of the ascending sensory pathway of the Xenopus tadpole. Therefore, a novel neuronal population has been proposed to lie in the hindbrain of the tadpole, and being able to 'hold' the sensory information, thus accounting for the long and variable delay of swim initiation. In this work, the role of the hindbrain in the maintenance of the long and variable response to trunk skin stimulation is investigated in the Xenopustadpole at developmental stage 37/38. A multifaceted approach has been used to unravel the neuronal mechanisms underlying the delayed motor response, including behavioural experiments, electrophysiology analysis of fictive swimming, hindbrain extracellular recordings and imaging experiments. Two novel neuronal populations have been identified in the tadpole's hindbrain, which exhibit activation patterns compatible with the role of delaying the excitation of the spinal locomotor circuit. Future work on cellular properties and synaptic connections of these newly discovered populations might shed light on the mechanism of descending control active at embryonic stage. Identifying supraspinal neuronal populations in an embryonic organism could aid in understanding mechanisms of descending motor control in more complex vertebrates

    In Vitro, In Vivo, and In Silico Studies of Reticulospinal Circuits and Generalized Arousal

    Get PDF
    Generalized arousal (GA) is a fundamental force in the nervous system that alerts an individual to abrupt changes in its environment. A state of high GA is operationally defined by increases in an animal’s a.) locomotor output, b.) responsiveness to sensory stimuli, and c.) emotional reactivity. Previous studies have identified the nucleus gigantocellularis (NGC), a small group of large-bodied neurons in the hindbrain reticular formation, as a potential neuronal substrate for GA. These neurons are responsive to a wide range of sensory modalities and have diverse projections that target both forebrain areas and motor effectors directly within the spinal cord, thereby facilitating rapid responses to sensory stimulation. Here, we used three different approaches to study the role of GA in driving and modulating mammalian motor activity: in silico modeling of GA circuits, in vitro culture of a reticulospinal circuit, and in vivo behavioral assays of circadian transitions in GA. In our in silico study, we constructed a variety of computational models of the generalized arousal circuit and asked how modifying specific aspects of the NGC and its connectivity would influence the responsiveness of motor effectors in the circuit to arousing sensory stimuli. These models reveal that an NGC with a homogeneous microstructure that integrates all inputs equally and bifurcating projections that simultaneously target limbic and spinal areas is most effective at transducing an arousing sensory signal
    corecore