4,224 research outputs found

    Robust 1-Bit Compressed Sensing via Hinge Loss Minimization

    Full text link
    This work theoretically studies the problem of estimating a structured high-dimensional signal x0∈Rnx_0 \in \mathbb{R}^n from noisy 11-bit Gaussian measurements. Our recovery approach is based on a simple convex program which uses the hinge loss function as data fidelity term. While such a risk minimization strategy is very natural to learn binary output models, such as in classification, its capacity to estimate a specific signal vector is largely unexplored. A major difficulty is that the hinge loss is just piecewise linear, so that its "curvature energy" is concentrated in a single point. This is substantially different from other popular loss functions considered in signal estimation, e.g., the square or logistic loss, which are at least locally strongly convex. It is therefore somewhat unexpected that we can still prove very similar types of recovery guarantees for the hinge loss estimator, even in the presence of strong noise. More specifically, our non-asymptotic error bounds show that stable and robust reconstruction of x0x_0 can be achieved with the optimal oversampling rate O(m−1/2)O(m^{-1/2}) in terms of the number of measurements mm. Moreover, we permit a wide class of structural assumptions on the ground truth signal, in the sense that x0x_0 can belong to an arbitrary bounded convex set K⊂RnK \subset \mathbb{R}^n. The proofs of our main results rely on some recent advances in statistical learning theory due to Mendelson. In particular, we invoke an adapted version of Mendelson's small ball method that allows us to establish a quadratic lower bound on the error of the first order Taylor approximation of the empirical hinge loss function

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    Conditioning of Random Block Subdictionaries with Applications to Block-Sparse Recovery and Regression

    Full text link
    The linear model, in which a set of observations is assumed to be given by a linear combination of columns of a matrix, has long been the mainstay of the statistics and signal processing literature. One particular challenge for inference under linear models is understanding the conditions on the dictionary under which reliable inference is possible. This challenge has attracted renewed attention in recent years since many modern inference problems deal with the "underdetermined" setting, in which the number of observations is much smaller than the number of columns in the dictionary. This paper makes several contributions for this setting when the set of observations is given by a linear combination of a small number of groups of columns of the dictionary, termed the "block-sparse" case. First, it specifies conditions on the dictionary under which most block subdictionaries are well conditioned. This result is fundamentally different from prior work on block-sparse inference because (i) it provides conditions that can be explicitly computed in polynomial time, (ii) the given conditions translate into near-optimal scaling of the number of columns of the block subdictionaries as a function of the number of observations for a large class of dictionaries, and (iii) it suggests that the spectral norm and the quadratic-mean block coherence of the dictionary (rather than the worst-case coherences) fundamentally limit the scaling of dimensions of the well-conditioned block subdictionaries. Second, this paper investigates the problems of block-sparse recovery and block-sparse regression in underdetermined settings. Near-optimal block-sparse recovery and regression are possible for certain dictionaries as long as the dictionary satisfies easily computable conditions and the coefficients describing the linear combination of groups of columns can be modeled through a mild statistical prior.Comment: 39 pages, 3 figures. A revised and expanded version of the paper published in IEEE Transactions on Information Theory (DOI: 10.1109/TIT.2015.2429632); this revision includes corrections in the proofs of some of the result

    Balancing Sparsity and Rank Constraints in Quadratic Basis Pursuit

    Get PDF
    We investigate the methods that simultaneously enforce sparsity and low-rank structure in a matrix as often employed for sparse phase retrieval problems or phase calibration problems in compressive sensing. We propose a new approach for analyzing the trade off between the sparsity and low rank constraints in these approaches which not only helps to provide guidelines to adjust the weights between the aforementioned constraints, but also enables new simulation strategies for evaluating performance. We then provide simulation results for phase retrieval and phase calibration cases both to demonstrate the consistency of the proposed method with other approaches and to evaluate the change of performance with different weights for the sparsity and low rank structure constraints

    Phase Retrieval From Binary Measurements

    Full text link
    We consider the problem of signal reconstruction from quadratic measurements that are encoded as +1 or -1 depending on whether they exceed a predetermined positive threshold or not. Binary measurements are fast to acquire and inexpensive in terms of hardware. We formulate the problem of signal reconstruction using a consistency criterion, wherein one seeks to find a signal that is in agreement with the measurements. To enforce consistency, we construct a convex cost using a one-sided quadratic penalty and minimize it using an iterative accelerated projected gradient-descent (APGD) technique. The PGD scheme reduces the cost function in each iteration, whereas incorporating momentum into PGD, notwithstanding the lack of such a descent property, exhibits faster convergence than PGD empirically. We refer to the resulting algorithm as binary phase retrieval (BPR). Considering additive white noise contamination prior to quantization, we also derive the Cramer-Rao Bound (CRB) for the binary encoding model. Experimental results demonstrate that the BPR algorithm yields a signal-to- reconstruction error ratio (SRER) of approximately 25 dB in the absence of noise. In the presence of noise prior to quantization, the SRER is within 2 to 3 dB of the CRB

    Simultaneously Structured Models with Application to Sparse and Low-rank Matrices

    Get PDF
    The topic of recovery of a structured model given a small number of linear observations has been well-studied in recent years. Examples include recovering sparse or group-sparse vectors, low-rank matrices, and the sum of sparse and low-rank matrices, among others. In various applications in signal processing and machine learning, the model of interest is known to be structured in several ways at the same time, for example, a matrix that is simultaneously sparse and low-rank. Often norms that promote each individual structure are known, and allow for recovery using an order-wise optimal number of measurements (e.g., â„“1\ell_1 norm for sparsity, nuclear norm for matrix rank). Hence, it is reasonable to minimize a combination of such norms. We show that, surprisingly, if we use multi-objective optimization with these norms, then we can do no better, order-wise, than an algorithm that exploits only one of the present structures. This result suggests that to fully exploit the multiple structures, we need an entirely new convex relaxation, i.e. not one that is a function of the convex relaxations used for each structure. We then specialize our results to the case of sparse and low-rank matrices. We show that a nonconvex formulation of the problem can recover the model from very few measurements, which is on the order of the degrees of freedom of the matrix, whereas the convex problem obtained from a combination of the â„“1\ell_1 and nuclear norms requires many more measurements. This proves an order-wise gap between the performance of the convex and nonconvex recovery problems in this case. Our framework applies to arbitrary structure-inducing norms as well as to a wide range of measurement ensembles. This allows us to give performance bounds for problems such as sparse phase retrieval and low-rank tensor completion.Comment: 38 pages, 9 figure
    • …
    corecore