185 research outputs found

    Super-resolution of synthetic aperture radar complex data by deep-learning

    Get PDF
    One of the greatest limitations of Synthetic Aperture Radar imagery is the capability to obtain an arbitrarily high spatial resolution. Indeed, despite optical sensors, this capability is not just limited by the sensor technology. Instead, improving the SAR spatial resolution requires large transmitted bandwidth and relatively long synthetic apertures that for regulatory and practical reasons are impossible to be met. This issue gets particularly relevant when dealing with Stripmap mode acquisitions and with relatively low carrier frequency sensors (where relatively large bandwidth signals are more difficult to be transmitted). To overcome this limitation, in this paper a deep learning based framework is proposed to enhance the SAR image spatial resolution while retaining the complex image accuracy. Results on simuated and real SAR data demonstrate the effectiveness of the proposed framework

    Machine Learning for Beamforming in Audio, Ultrasound, and Radar

    Get PDF
    Multi-sensor signal processing plays a crucial role in the working of several everyday technologies, from correctly understanding speech on smart home devices to ensuring aircraft fly safely. A specific type of multi-sensor signal processing called beamforming forms a central part of this thesis. Beamforming works by combining the information from several spatially distributed sensors to directionally filter information, boosting the signal from a certain direction but suppressing others. The idea of beamforming is key to the domains of audio, ultrasound, and radar. Machine learning is the other central part of this thesis. Machine learning, and especially its sub-field of deep learning, has enabled breakneck progress in tackling several problems that were previously thought intractable. Today, machine learning powers many of the cutting edge systems we see on the internet for image classification, speech recognition, language translation, and more. In this dissertation, we look at beamforming pipelines in audio, ultrasound, and radar from a machine learning lens and endeavor to improve different parts of the pipelines using ideas from machine learning. We start off in the audio domain and derive a machine learning inspired beamformer to tackle the problem of ensuring the audio captured by a camera matches its visual content, a problem we term audiovisual zooming. Staying in the audio domain, we then demonstrate how deep learning can be used to improve the perceptual qualities of speech by denoising speech clipping, codec distortions, and gaps in speech. Transitioning to the ultrasound domain, we improve the performance of short-lag spatial coherence ultrasound imaging by exploiting the differences in tissue texture at each short lag value by applying robust principal component analysis. Next, we use deep learning as an alternative to beamforming in ultrasound and improve the information extraction pipeline by simultaneously generating both a segmentation map and B-mode image of high quality directly from raw received ultrasound data. Finally, we move to the radar domain and study how deep learning can be used to improve signal quality in ultra-wideband synthetic aperture radar by suppressing radio frequency interference, random spectral gaps, and contiguous block spectral gaps. By training and applying the networks on raw single-aperture data prior to beamforming, it can work with myriad sensor geometries and different beamforming equations, a crucial requirement in synthetic aperture radar

    Motion robust acquisition and reconstruction of quantitative T2* maps in the developing brain

    Get PDF
    The goal of the research presented in this thesis was to develop methods for quantitative T2* mapping of the developing brain. Brain maturation in the early period of life involves complex structural and physiological changes caused by synaptogenesis, myelination and growth of cells. Molecular structures and biological processes give rise to varying levels of T2* relaxation time, which is an inherent contrast mechanism in magnetic resonance imaging. The knowledge of T2* relaxation times in the brain can thus help with evaluation of pathology by establishing its normative values in the key areas of the brain. T2* relaxation values are a valuable biomarker for myelin microstructure and iron concentration, as well as an important guide towards achievement of optimal fMRI contrast. However, fetal MR imaging is a significant step up from neonatal or adult MR imaging due to the complexity of the acquisition and reconstruction techniques that are required to provide high quality artifact-free images in the presence of maternal respiration and unpredictable fetal motion. The first contribution of this thesis, described in Chapter 4, presents a novel acquisition method for measurement of fetal brain T2* values. At the time of publication, this was the first study of fetal brain T2* values. Single shot multi-echo gradient echo EPI was proposed as a rapid method for measuring fetal T2* values by effectively freezing intra-slice motion. The study concluded that fetal T2* values are higher than those previously reported for pre-term neonates and decline with a consistent trend across gestational age. The data also suggested that longer than usual echo times or direct T2* measurement should be considered when performing fetal fMRI in order to reach optimal BOLD sensitivity. For the second contribution, described in Chapter 5, measurements were extended to a higher field strength of 3T and reported, for the first time, both for fetal and neonatal subjects at this field strength. The technical contribution of this work is a fully automatic segmentation framework that propagates brain tissue labels onto the acquired T2* maps without the need for manual intervention. The third contribution, described in Chapter 6, proposed a new method for performing 3D fetal brain reconstruction where the available data is sparse and is therefore limited in the use of current state of the art techniques for 3D brain reconstruction in the presence of motion. To enable a high resolution reconstruction, a generative adversarial network was trained to perform image to image translation between T2 weighted and T2* weighted data. Translated images could then be served as a prior for slice alignment and super resolution reconstruction of 3D brain image.Open Acces

    Sparse and Redundant Representations for Inverse Problems and Recognition

    Get PDF
    Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented

    Digital Image Processing

    Get PDF
    Newspapers and the popular scientific press today publish many examples of highly impressive images. These images range, for example, from those showing regions of star birth in the distant Universe to the extent of the stratospheric ozone depletion over Antarctica in springtime, and to those regions of the human brain affected by Alzheimer’s disease. Processed digitally to generate spectacular images, often in false colour, they all make an immediate and deep impact on the viewer’s imagination and understanding. Professor Jonathan Blackledge’s erudite but very useful new treatise Digital Image Processing: Mathematical and Computational Methods explains both the underlying theory and the techniques used to produce such images in considerable detail. It also provides many valuable example problems - and their solutions - so that the reader can test his/her grasp of the physical, mathematical and numerical aspects of the particular topics and methods discussed. As such, this magnum opus complements the author’s earlier work Digital Signal Processing. Both books are a wonderful resource for students who wish to make their careers in this fascinating and rapidly developing field which has an ever increasing number of areas of application. The strengths of this large book lie in: • excellent explanatory introduction to the subject; • thorough treatment of the theoretical foundations, dealing with both electromagnetic and acoustic wave scattering and allied techniques; • comprehensive discussion of all the basic principles, the mathematical transforms (e.g. the Fourier and Radon transforms), their interrelationships and, in particular, Born scattering theory and its application to imaging systems modelling; discussion in detail - including the assumptions and limitations - of optical imaging, seismic imaging, medical imaging (using ultrasound), X-ray computer aided tomography, tomography when the wavelength of the probing radiation is of the same order as the dimensions of the scatterer, Synthetic Aperture Radar (airborne or spaceborne), digital watermarking and holography; detail devoted to the methods of implementation of the analytical schemes in various case studies and also as numerical packages (especially in C/C++); • coverage of deconvolution, de-blurring (or sharpening) an image, maximum entropy techniques, Bayesian estimators, techniques for enhancing the dynamic range of an image, methods of filtering images and techniques for noise reduction; • discussion of thresholding, techniques for detecting edges in an image and for contrast stretching, stochastic scattering (random walk models) and models for characterizing an image statistically; • investigation of fractal images, fractal dimension segmentation, image texture, the coding and storing of large quantities of data, and image compression such as JPEG; • valuable summary of the important results obtained in each Chapter given at its end; • suggestions for further reading at the end of each Chapter. I warmly commend this text to all readers, and trust that they will find it to be invaluable. Professor Michael J Rycroft Visiting Professor at the International Space University, Strasbourg, France, and at Cranfield University, England

    Proceedings of the Augmented VIsual Display (AVID) Research Workshop

    Get PDF
    The papers, abstracts, and presentations were presented at a three day workshop focused on sensor modeling and simulation, and image enhancement, processing, and fusion. The technical sessions emphasized how sensor technology can be used to create visual imagery adequate for aircraft control and operations. Participants from industry, government, and academic laboratories contributed to panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing (Computer and Human Vision), and Image Evaluation and Metrics

    Research program of the Geodynamics Branch

    Get PDF
    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members

    Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology

    Get PDF
    Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed
    • …
    corecore