1,415 research outputs found

    IMAGES I, MD101: A coring cruise of the R/V Marion Dufresne in the North Atlantic Ocean and Norwegian Sea

    Get PDF
    IMAGES coordinated a first international cruise in June and July 1995 over the North Atlantic and Norwegian sea on board the French RN Mm'ion Dufresne (MD 10 I, Brest - Stornoway (Lewis Island) - St-Pierre - Azores - Marseille). Its main scientific objective was the collection of giant piston cores on rapidly sedimenting drifts and continental margins of the North Atlantic ocean and Norwegian Sea, along the track of the main thermohaline circulation. The cruise crossed the North-East Atlantic margins, the Feni Drift, the Scottish, North Faeroes and Norwegian margins (to nON), the Iceland South-East margins, the Gardar Drift, the NAMOC Channel, the Newfoundland margin, the Bermuda rise, the mid Atlantic ridge, and the Azores and Iberian margins. Additional objectives covered: - the contribution of Mediterranean waters to the North Atlantic intermediate waters, with 5 cores recovered across the slopes of the Iberian margin; - the evolution of the NAMOC channel, in the deep North-West Atlantic basin, in relation to the growths and decays of the Laurentide ice sheet (8 Kullenberg and gravity cores). This was the maiden cruise of the new Mm'ion Dujresne, just 2 weeks out from her Le Havre shipyard. The ship had a very small number of problems, taking into account the number of things which were not ready just a few days before the departure. Two days were lost for engine problems. 70 scientists, students and technicians from 22 institutions (13 countries) participated to at least one of the three legs. 43 cores (mean length over 30 meters) have been retrieved during the cruise, described and measured for magnetic susceptibility, p-wave velocity, y density and spectral light reflectance. The longest core, MD 95-2036 (52.64 m) was retrieved at 4461 m water depth on the Bermuda Rise. It covers about 150 kyr with a sedimentation rate over 30 cm/kyr. The Calypso corer worked properly, once a few problems encountered at the be"innin" of the cruise had been solved (i.e. sliced or imploded PVC liner). This report presents preliminary results, mostly obtained on board: core descriptions, physical properties and micro-paleontological stratigraphy. Color reflectance (between 40° and 55°N) and magnetic susceptibility (between 50° and 700N) have been used for direct tuning of the time scales by cyclo-stratigraphy in the precession and obliquity bands. Ocean-wide correlations have been established over the last 250 kyr

    New approaches to the measurement of chlorophyll, related pigments and productivity in the sea

    Get PDF
    In the 1984 SBIR Call for Proposals, NASA solicited new methods to measure primary production and chlorophyll in the ocean. Biospherical Instruments Inc. responded to this call with a proposal first to study a variety of approaches to this problem. A second phase of research was then funded to pursue instrumentation to measure the sunlight stimulated naturally occurring fluorescence of chlorophyll in marine phytoplankton. The monitoring of global productivity, global fisheries resources, application of above surface-to-underwater optical communications systems, submarine detection applications, correlation, and calibration of remote sensing systems are but some of the reasons for developing inexpensive sensors to measure chlorophyll and productivity. Normally, productivity measurements are manpower and cost intensive and, with the exception of a very few expensive multiship research experiments, provide no contemporaneous data. We feel that the patented, simple sensors that we have designed will provide a cost effective method for large scale, synoptic, optical measurements in the ocean. This document is the final project report for a NASA sponsored SBIR Phase 2 effort to develop new methods for the measurements of primary production in the ocean. This project has been successfully completed, a U.S. patent was issued covering the methodology and sensors, and the first production run of instrumentation developed under this contract has sold out and been delivered

    CALYPSO: Private Data Management for Decentralized Ledgers

    Get PDF
    Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs. Calypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees

    Nachwort von: James Joyce, Ulysses. A Critical and Synoptic Edition, Band 3: New York, 1986

    Get PDF

    CALYPSO 2019 Cruise Report: field campaign in the Mediterranean

    Get PDF
    This cruise aimed to identify transport pathways from the surface into the interior ocean during the late winter in the Alborán sea between the Strait of Gibraltar (5°40’W) and the prime meridian. Theory and previous observations indicated that these pathways likely originated at strong fronts, such as the one that separates salty Mediterranean water and the fresher water in owing from the Atlantic. Our goal was to map such pathways and quantify their transport. Since the outcropping isopycnals at the front extend to the deepest depths during the late winter, we planned the cruise at the end of the Spring, prior to the onset of thermal stratification of the surface mixed layer.Funding was provided by the Office of Naval Research under Contract No. N000141613130

    Improving Radiotherapy Targeting for Cancer Treatment Through Space and Time

    Get PDF
    Radiotherapy is a common medical treatment in which lethal doses of ionizing radiation are preferentially delivered to cancerous tumors. In external beam radiotherapy, radiation is delivered by a remote source which sits several feet from the patient\u27s surface. Although great effort is taken in properly aligning the target to the path of the radiation beam, positional uncertainties and other errors can compromise targeting accuracy. Such errors can lead to a failure in treating the target, and inflict significant toxicity to healthy tissues which are inadvertently exposed high radiation doses. Tracking the movement of targeted anatomy between and during treatment fractions provides valuable localization information that allows for the reduction of these positional uncertainties. Inter- and intra-fraction anatomical localization data not only allows for more accurate treatment setup, but also potentially allows for 1) retrospective treatment evaluation, 2) margin reduction and modification of the dose distribution to accommodate daily anatomical changes (called `adaptive radiotherapy\u27), and 3) targeting interventions during treatment (for example, suspending radiation delivery while the target it outside the path of the beam). The research presented here investigates the use of inter- and intra-fraction localization technologies to improve radiotherapy to targets through enhanced spatial and temporal accuracy. These technologies provide significant advancements in cancer treatment compared to standard clinical technologies. Furthermore, work is presented for the use of localization data acquired from these technologies in adaptive treatment planning, an investigational technique in which the distribution of planned dose is modified during the course of treatment based on biological and/or geometrical changes of the patient\u27s anatomy. The focus of this research is directed at abdominal sites, which has historically been central to the problem of motion management in radiation therapy
    • …
    corecore