2,494 research outputs found

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Low rank tensor recovery via iterative hard thresholding

    Full text link
    We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versions of the iterative hard thresholding algorithm for several tensor decompositions, namely the higher order singular value decomposition (HOSVD), the tensor train format (TT), and the general hierarchical Tucker decomposition (HT). We provide a partial convergence result for these algorithms which is based on a variant of the restricted isometry property of the measurement operator adapted to the tensor decomposition at hand that induces a corresponding notion of tensor rank. We show that subgaussian measurement ensembles satisfy the tensor restricted isometry property with high probability under a certain almost optimal bound on the number of measurements which depends on the corresponding tensor format. These bounds are extended to partial Fourier maps combined with random sign flips of the tensor entries. Finally, we illustrate the performance of iterative hard thresholding methods for tensor recovery via numerical experiments where we consider recovery from Gaussian random measurements, tensor completion (recovery of missing entries), and Fourier measurements for third order tensors.Comment: 34 page
    • …
    corecore