500 research outputs found

    Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure

    Get PDF
    We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and V\'azquez, where the pressure is obtained as a Riesz potential associated to the density. We take advantage of the displacement convexity of the Riesz potential in one dimension to show a functional inequality involving the entropy, entropy dissipation, and the Euclidean transport distance. An argument by approximation shows that this functional inequality is enough to deduce the exponential convergence of solutions in self-similar variables to the unique steady states

    Self-similar prior and wavelet bases for hidden incompressible turbulent motion

    Get PDF
    This work is concerned with the ill-posed inverse problem of estimating turbulent flows from the observation of an image sequence. From a Bayesian perspective, a divergence-free isotropic fractional Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent velocity fields. This self-similar prior characterizes accurately second-order statistics of velocity fields in incompressible isotropic turbulence. Nevertheless, the associated maximum a posteriori involves a fractional Laplacian operator which is delicate to implement in practice. To deal with this issue, we propose to decompose the divergent-free fBm on well-chosen wavelet bases. As a first alternative, we propose to design wavelets as whitening filters. We show that these filters are fractional Laplacian wavelets composed with the Leray projector. As a second alternative, we use a divergence-free wavelet basis, which takes implicitly into account the incompressibility constraint arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we are able to handle this dependence in practice. Based on these two wavelet decompositions, we finally provide effective and efficient algorithms to approach the maximum a posteriori. An intensive numerical evaluation proves the relevance of the proposed wavelet-based self-similar priors.Comment: SIAM Journal on Imaging Sciences, 201

    Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion

    Full text link
    Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d≥2d\geq 2 and in all of space for d≥3d\geq 3, the uniqueness being a result previously not known for PKS with degenerate diffusion. We generalize the notion of criticality for PKS and show that subcritical problems are globally well-posed. For a fairly general class of problems, we prove the existence of a critical mass which sharply divides the possibility of finite time blow up and global existence. Moreover, we compute the critical mass for fully general problems and show that solutions with smaller mass exists globally. For a class of supercritical problems we prove finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page

    Classical and Quantum Mechanical Models of Many-Particle Systems

    Get PDF
    This workshop was dedicated to the presentation of recent results in the field of the mathematical study of kinetic theory and its naturalextensions (statistical physics and fluid mechanics). The main models are the Vlasov(-Poisson) equation and the Boltzmann equation, which are obtainedas limits of many-body equations (Newton’s equations in the classical case and Schrödinger’s equation in the quantum case) thanks to the mean-field and Boltzmann-Grad scalings. Numerical aspects and applications to mechanics, physics, engineering and biology were also discussed

    Recovery of the Order of Derivation for Fractional Diffusion Equations in an Unknown Medium

    Get PDF
    In this work, we investigate the recovery of a parameter in a diffusion process given by the order of derivation in time for a class of diffusion-type equations, including both classical and time-fractional diffusion equations, from the flux measurement observed at one point on the boundary. The mathematical model for time-fractional diffusion equations involves a Djrbashian--Caputo fractional derivative in time. We prove a uniqueness result in an unknown medium (e.g., diffusion coefficients, obstacle, initial condition, and source), i.e., the recovery of the order of derivation in a diffusion process having several pieces of unknown information. The proof relies on the analyticity of the solution at large time, asymptotic decay behavior, strong maximum principle of the elliptic problem, and suitable application of the Hopf lemma. Further we provide an easy-to-implement reconstruction algorithm based on a nonlinear least-squares formulation, and several numerical experiments are presented to complement the theoretical analysis

    Applications of PDEs inpainting to magnetic particle imaging and corneal topography

    Get PDF
    In this work we propose a novel application of Partial Differential Equations (PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of concentration maps for superparamagnetic nanoparticles, used as tracers in the framework of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with and without adding a source of noise, to show that the inpainted images preserve the main properties of the original ones. The second medical application is related to recovering data of corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs inpainting techniques to the radial curvature image is proposed. The images of the anterior corneal surface are properly recovered to obtain an approximation error of the required precision. We compare inpainting methods based on second, third and fourth-order PDEs with standard approximation and interpolation techniques

    Oscillatory damping in long-time evolution of the\ud surface quasi-geostrophic equations with generalised\ud viscosity: a numerical study

    Get PDF
    We study numerically the long-time evolution of the surface quasi-geostrophic\ud equation with generalised viscosity of the form (−¥Delta)¥alpha(-¥Delta)^¥alpha, where global regularity has\ud been proved mathematically for the subcritical parameter range ¥alpha¥geq¥frac12¥alpha ¥geq ¥frac{1}{2}. Even in\ud the supercritical range, we have found numerically that smooth evolution persists, but\ud with a very slow and oscillatory damping in the long run. A subtle balance between\ud nonlinear and dissipative terms is observed therein. Notably, qualitative behaviours\ud of the analytic properties of the solution do not change in the super and subcritical\ud ranges, suggesting the current theoretical boundary ¥alpha=¥frac12¥alpha =¥frac{1}{2} is of technical nature
    • …
    corecore