91 research outputs found

    Probablistic approaches for intelligent AUV localisation

    Get PDF
    This thesis studies the problem of intelligent localisation for an autonomous underwater vehicle (AUV). After an introduction about robot localisation and specific issues in the underwater domain, the thesis will focus on passive techniques for AUV localisation, highlighting experimental results and comparison among different techniques. Then, it will develop active techniques, which require intelligent decisions about the steps to undertake in order for the AUV to localise itself. The undertaken methodology consisted in three stages: theoretical analysis of the problem, tests with a simulation environment, integration in the robot architecture and field trials. The conclusions highlight applications and scenarios where the developed techniques have been successfully used or can be potentially used to enhance the results given by current techniques. The main contribution of this thesis is in the proposal of an active localisation module, which is able to determine the best set of action to be executed, in order to maximise the localisation results, in terms of time and efficiency

    On the use of autonomous unmanned vehicles in response to hazardous atmospheric release incidents

    Get PDF
    Recent events have induced a surge of interest in the methods of response to releases of hazardous materials or gases into the atmosphere. In the last decade there has been particular interest in mapping and quantifying emissions for regulatory purposes, emergency response, and environmental monitoring. Examples include: responding to events such as gas leaks, nuclear accidents or chemical, biological or radiological (CBR) accidents or attacks, and even exploring sources of methane emissions on the planet Mars. This thesis presents a review of the potential responses to hazardous releases, which includes source localisation, boundary tracking, mapping and source term estimation. [Continues.]</div

    A Service Robot for Navigation Assistance and Physical Rehabilitation of Seniors

    Get PDF
    The population of the advanced countries is ageing, with the direct consequence that an increasing number of people will have to live with sensitive, cognitive and physical disabilities. People with impaired physical ability are not confident to move alone, especially in crowded environment and for long journeys, highly reducing the quality of their life. We propose a new generation of robotic walking assistants whose mechanical and electronic components are conceived to optimize the collaboration between the robot and its users. We will apply these general ideas to investigate the interaction between older adults and a robotic walker, named FriWalk, exploiting it either as a navigational or as a rehabilitation aid. For the use of the FriWalk as a navigation assistance, the system guides the user securing high levels of safety, a perfect compliance with the social rules and non-intrusive interaction between human and machine. To this purpose, we developed several guidance systems ranging from completely passive strategies to active solutions exploiting either the rear or the front motors mounted on the robot. The common strategy at the basis of all the algorithms is that the responsibility of the locomotion belongs always to the user, both to increase the mobility of elder users and to enhance their perception of control over the robot. This way the robot intervenes only whenever it is strictly necessary not to mitigate the user safety. Moreover, the robotic walker has been endowed with a tablet and graphical user interface (GUI) which provides the user with the visual indications about the path to follow. Since the FriWalk was developed to suit the needs of users with different deficits, we conducted extensive human-robot interaction (HRI) experiments with elders, complemented with direct interviews of the participants. As concerns the use of the FriWalk as a rehabilitation aid, force sensing to estimate the torques applied by the user and change the user perceived inertia can be exploited by doctors to let the user feel the device heavier or lighter. Moreover, thanks to a new generation of sensors, the device can be exploited in a clinical context to track the performance of the users' rehabilitation exercises, in order to assist nurses and doctors during the hospitalization of older adults

    Function Embeddings for Multi-modal Bayesian Inference

    Get PDF
    Tractable Bayesian inference is a fundamental challenge in robotics and machine learning. Standard approaches such as Gaussian process regression and Kalman filtering make strong Gaussianity assumptions about the underlying distributions. Such assumptions, however, can quickly break down when dealing with complex systems such as the dynamics of a robot or multi-variate spatial models. In this thesis we aim to solve Bayesian regression and filtering problems without making assumptions about the underlying distributions. We develop techniques to produce rich posterior representations for complex, multi-modal phenomena. Our work extends kernel Bayes' rule (KBR), which uses empirical estimates of distributions derived from a set of training samples and embeds them into a high-dimensional reproducing kernel Hilbert space (RKHS). Bayes' rule itself occurs on elements of this space. Our first contribution is the development of an efficient method for estimating posterior density functions from kernel Bayes' rule, applied to both filtering and regression. By embedding fixed-mean mixtures of component distributions, we can efficiently find an approximate pre-image by optimising the mixture weights using a convex quadratic program. The result is a complex, multi-modal posterior representation. Our next contributions are methods for estimating cumulative distributions and quantile estimates from the posterior embedding of kernel Bayes' rule. We examine a number of novel methods, including those based on our density estimation techniques, as well as directly estimating the cumulative through use of the reproducing property of RKHSs. Finally, we develop a novel method for scaling kernel Bayes' rule inference to large datasets, using a reduced-set construction optimised using the posterior likelihood. This method retains the ability to perform multi-output inference, as well as our earlier contributions to represent explicitly non-Gaussian posteriors and quantile estimates

    Chronic Poverty Report 2023: Pandemic Poverty

    Get PDF
    The Chronic Poverty Report 2023: Pandemic Poverty sets out to investigate the highly negative effects of the Covid-19 restrictions, and most importantly, the success or otherwise of the measures pursued to mitigate those effects on people in and near poverty. The leading message is that if restrictions were necessary, they should be minimised, and complemented by measures to mitigate their negative effects. During the pandemic, such measures were in most countries completely inadequate to prevent impoverishment and downward socio-economic mobility. The report makes suggestions on what needs to be done in a similar future crisis to avoid the economic and social reversals we have seen since 2020, and some steps on the road to recovery. This first CPAN report on Pandemic Poverty is the product of a long-term partnership across 18 countries in the global south. 12 of those countries participated in the Chronic Poverty Advisory Network’s Covid-19 Poverty Monitoring Initiative. These revisited life history respondents from pre-pandemic qualitative research and caught up with their lived experiences during the pandemic. This was designed as a people centred complement to the high-frequency phone surveys which were undertaken in many countries during the pandemic. Authors from some of the same countries and others based at the Institute of Development Studies, were involved in writing this report. They carried out key informant interviews with policymakers and implementers to track and understand the development of policy responses during the pandemic, and to analyse the policy discourses in each country. The co-authors met monthly for six months while the report was being written to ensure coherence

    Mapping, Path Following, and Perception with Long Range Passive UHF RFID for Mobile Robots

    Get PDF
    Service robots have shown an impressive potential in providing assistance and guidance in various environments, such as supermarkets, shopping malls, homes, airports, and libraries. Due to the low-cost and contactless way of communication, radio-frequency identification (RFID) technology provides a solution to overcome the difficulties (e.g. occlusions) that the traditional line of sight sensors (e.g. cameras and laser range finders) face. In this thesis, we address the applications of using passive ultra high frequency (UHF) RFID as a sensing technology for mobile robots in three fundamental tasks, namely mapping, path following, and tracking. An important task in the field of RFID is mapping, which aims at inferring the positions of RFID tags based on the measurements (i.e. the detections as well as the received signal strength) received by the RFID reader. The robot, which serves as an intelligent mobile carrier, is able to localize itself in a known environment based on the existing positioning techniques, such as laser-based Monte Carlo localization. The mapping process requires a probabilistic sensor model, which characterizes the likelihood of receiving a measurement, given the relative pose of the antenna and the tag. In this thesis, we address the problem of recovering from mapping failures of static RFID tags and localizing non-static RFID tags which do not move frequently using a particle filter. The usefulness of negative information (e.g. non-detections) is also examined in the context of mapping RFID tags. Moreover, we present a novel three dimensional (3D) sensor model to improve the mapping accuracy of RFID tags. In particular, using this new sensor model, we are able to localize the 3D position of an RFID tag by mounting two antennas at different heights on the robot. We additionally utilize negative information to improve the mapping accuracy, especially for the height estimation in our stereo antenna configuration. The model-based localization approach, which works as a dual to the mapping process, estimates the pose of the robot based on the sensor model as well as the given positions of RFID tags. The fingerprinting-based approach was shown to be superior to the model-based approach, since it is able to better capture the unpredictable radio frequency characteristics in the existing infrastructure. Here, we present a novel approach that combines RFID fingerprints and odometry information as an input of the motion control of a mobile robot for the purpose of path following in unknown environments. More precisely, we apply the teaching and playback scheme to perform this task. During the teaching stage, the robot is manually steered to move along a desired path. RFID measurements and the associated motion information are recorded in an online-fashion as reference data. In the second stage (i.e. playback stage), the robot follows this path autonomously by adjusting its pose according to the difference between the current RFIDmeasurements and the previously recorded reference measurements. Particularly, our approach needs no prior information about the distribution and positions of the tags, nor does it require a map of the environment. The proposed approach features a cost-effective alternative for mobile robot navigation if the robot is equipped with an RFID reader for inventory in RFID-tagged environments. The capability of a mobile robot to track dynamic objects is vital for efficiently interacting with its environment. Although a large number of researchers focus on the mapping of RFID tags, most of them only assume a static configuration of RFID tags and too little attention has been paid to dynamic ones. Therefore, we address the problem of tracking dynamic objects for mobile robots using RFID tags. In contrast to mapping of RFID tags, which aims at achieving a minimum mapping error, tracking does not only need a robust tracking performance, but also requires a fast reaction to the movement of the objects. To achieve this, we combine a two stage dynamic motion model with the dual particle filter, to capture the dynamic motion of the object and to quickly recover from failures in tracking. The state estimation from the particle filter is used in a combination with the VFH+ (Vector Field Histogram), which serves as a local path planner for obstacle avoidance, to guide the robot towards the target. This is then integrated into a framework, which allows the robot to search for both static and dynamic tags, follow it, and maintain the distance between them. [untranslated]Service-Roboter bergen ein großes Potential bei der UnterstĂŒtzung, Beratung und FĂŒhrung von Kunden oder Personal in verschiedenen Umgebungen wie zum Beispiel SupermĂ€rkten, Einkaufszentren, Wohnungen, FlughĂ€fen und Bibliotheken. Durch die geringen Kosten und die kontaktlose Kommunikation ist die RFID Technologie in der Lage vorhandene Herausforderungen traditioneller sichtlinienbasierter Sensoren (z.B. Verdeckung beim Einsatz von Kameras oder Laser-Entfernungsmessern) zu lösen. In dieser Arbeit beschĂ€ftigen wir uns mit dem Einsatz von passivem Ultrahochfrequenz (UHF) RFID als Sensortechnologie fĂŒr mobile Roboter hinsichtlich drei grundlegender Aufgabenstellungen Kartierung, Pfadverfolgung und Tracking. Kartierung nimmt eine wesentliche Rolle im Bereich der Robotik als auch beim Einsatz von RFID Sensoren ein. Hierbei ist das Ziel die Positionen von RFID-Tags anhand von Messungen (die Erfassung der Tags als solche und die SignalstĂ€rke) zu schĂ€tzen. Der Roboter, der als intelligenter mobiler TrĂ€ger dient, ist in der Lage, sich selbst in einer bekannten Umgebung auf Grundlage der bestehenden Positionierungsverfahren, wie Laser-basierter Monte-Carlo Lokalisierung zurechtzufinden. Der Kartierungsprozess erfordert ein probabilistisches Sensormodell, das die Wahrscheinlichkeit beschreibt, ein Tag an einer gegebenen Position relativ zur RFID-Antenne (ggf. mit einer bestimmten SignalstĂ€rke) zu erkennen. Zentrale Aspekte dieser Arbeit sind die Regeneration bei fehlerhafter Kartierung statischer RFID-Tags und die Lokalisierung von nicht-statischen RFID-Tags. Auch wird die Verwendbarkeit negativer Informationen, wie z.B. das Nichterkennen von Transpondern, im Rahmen der RFID Kartierung untersucht. DarĂŒber hinaus schlagen wir ein neues 3D-Sensormodell vor, welches die Genauigkeit der Kartierung von RFID-Tags verbessert. Durch die Montage von zwei Antennen auf verschiedenen Höhen des eingesetzten Roboters, erlaubt es dieses Modell im Besonderen, die 3D Positionen von Tags zu bestimmen. Dabei nutzen wir zusĂ€tzlich negative Informationen um die Genauigkeit der Kartierung zu erhöhen. Dank der Eindeutigkeit von RFID-Tags, ist es möglich die Lokalisierung eines mobilen Roboters ohne Mehrdeutigkeit zu bestimmen. Der modellbasierte Ansatz zur Lokalisierung schĂ€tzt die Pose des Roboters auf Basis des Sensormodells und den angegebenen Positionen der RFID-Tags. Es wurde gezeigt, dass der Fingerprinting-Ansatz dem modellbasierten Ansatz ĂŒberlegen ist, da ersterer in der Lage ist, die unvorhersehbaren Funkfrequenzeigenschaften in der vorhandenen Infrastruktur zu erfassen. HierfĂŒr prĂ€sentieren wir einen neuen Ansatz, der RFID Fingerprints und Odometrieinformationen fĂŒr die Zwecke der Pfadverfolgung in unbekannten Umgebungen kombiniert. Dieser basiert auf dem Teaching-and-Playback-Schema. WĂ€hrend der Teaching-Phase wird der Roboter manuell gelenkt, um ihn entlang eines gewĂŒnschten Pfades zu bewegen. RFID-Messungen und die damit verbundenen Bewegungsinformationen werden als Referenzdaten aufgezeichnet. In der zweiten Phase, der Playback-Phase, folgt der Roboter diesem Pfad autonom. Der vorgeschlagene Ansatz bietet eine kostengĂŒnstige Alternative fĂŒr die mobile Roboternavigation bei der Bestandsaufnahme in RFID-gekennzeichneten Umgebungen, wenn der Roboter mit einem RFID-LesegerĂ€t ausgestattet ist. Die FĂ€higkeit eines mobilen Roboters dynamische Objekte zu verfolgen ist entscheidend fĂŒr eine effiziente Interaktion mit der Umgebung. Obwohl sich viele Forscher mit der Kartierung von RFID-Tags befassen, nehmen die meisten eine statische Konfiguration der RFID-Tags an, nur wenige berĂŒcksichtigen dabei dynamische RFID-Tags. Wir wenden uns daher dem Problem der RFID basierten Verfolgung dynamischer Objekte mit mobilen Robotern zu. Im Gegensatz zur Kartierung von RFID-Tags, ist fĂŒr die Verfolgung nicht nur eine stabile Erkennung notwendig, es ist zudem erforderlich schnell auf die Bewegung der Objekte reagieren zu können. Um dies zu erreichen, kombinieren wir ein zweistufiges dynamisches Bewegungsmodell mit einem dual-Partikelfilter. Die ZustandsschĂ€tzung des Partikelfilters wird in Kombination mit dem VFH+ (Vektorfeld Histogramm) verwendet, um den Roboter in Richtung des Ziels zu leiten. Hierdurch ist es dem Roboter möglich nach statischen und dynamischen Tags zu suchen, ihnen zu folgen und dabei einen gewissen Abstand zu halten

    Exploring health risks and Resilience in a Rural Population in the Context of Environment-Related Diseases, Ngara, Tanzania

    Get PDF
    Public health ‘expert’ knowledge and technical ‘solutions’ to environment-related diseases are often embedded in biomedical perspectives that emphasise objectivity and rationality. However, such perspectives tend to sidestep the ways in which knowledge and solutions are shaped by social and cultural contexts. Public health interventions have therefore been evaluated in terms of the ‘failure’ of their intended recipients to ‘comply’ with them and in relation to public ‘misperceptions’ of risks to their health. This research was developed in an attempt to understandhow social and cultural beliefs and perceptions mediate health and the way that they contribute to, escalate or reduce risks to health. The study explores these attributes in the context of two issues: firstly, environment-related health risks pertaining to malaria and diarrheal diseases, and secondly residents’ perceptions and views of public health interventions and programmes. The research was carried out in two villages in rural northern Tanzania to explore the complexities of villagers’ behaviours in their everyday lives in order to help understand common public health concerns such as: why do some public health programmes succeed and others fail? Why do some individuals who know how to protect themselves against a particular disease choose not do so? And why are control and prevention of preventable infectious diseases problematic? The study employed an ethnographic approach based on a socio-cultural perspective. Focus groups and interviews were the main tools for data collection, and analysis was done inductively through development of key themes. Research findings show that social and cultural values, especially in relation to social capital, frame health-related risks in such a way as to shape the vulnerability and resilience of citizens to environment related illnesses. The thesis demonstrates a number of ways in which adherence to socio-cultural norms and practices takes precedence over potential concerns about risks to individual health

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • 

    corecore