262 research outputs found

    Image collection pop-up: 3D reconstruction and clustering of rigid and non-rigid categories

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper introduces an approach to simultaneously estimate 3D shape, camera pose, and object and type of deformation clustering, from partial 2D annotations in a multi-instance collection of images. Furthermore, we can indistinctly process rigid and non-rigid categories. This advances existing work, which only addresses the problem for one single object or, if multiple objects are considered, they are assumed to be clustered a priori. To handle this broader version of the problem, we model object deformation using a formulation based on multiple unions of subspaces, able to span from small rigid motion to complex deformations. The parameters of this model are learned via Augmented Lagrange Multipliers, in a completely unsupervised manner that does not require any training data at all. Extensive validation is provided in a wide variety of synthetic and real scenarios, including rigid and non-rigid categories with small and large deformations. In all cases our approach outperforms state-of-the-art in terms of 3D reconstruction accuracy, while also providing clustering results that allow segmenting the images into object instances and their associated type of deformation (or action the object is performing).Postprint (author's final draft

    MHR-Net: Multiple-Hypothesis Reconstruction of Non-Rigid Shapes from 2D Views

    Full text link
    We propose MHR-Net, a novel method for recovering Non-Rigid Shapes from Motion (NRSfM). MHR-Net aims to find a set of reasonable reconstructions for a 2D view, and it also selects the most likely reconstruction from the set. To deal with the challenging unsupervised generation of non-rigid shapes, we develop a new Deterministic Basis and Stochastic Deformation scheme in MHR-Net. The non-rigid shape is first expressed as the sum of a coarse shape basis and a flexible shape deformation, then multiple hypotheses are generated with uncertainty modeling of the deformation part. MHR-Net is optimized with reprojection loss on the basis and the best hypothesis. Furthermore, we design a new Procrustean Residual Loss, which reduces the rigid rotations between similar shapes and further improves the performance. Experiments show that MHR-Net achieves state-of-the-art reconstruction accuracy on Human3.6M, SURREAL and 300-VW datasets.Comment: Accepted to ECCV 202

    Survey on 2D and 3D human pose recovery

    Get PDF
    Human Pose Recovery approaches have been studied in the eld of Computer Vision for the last 40 years. Several approaches have been reported, and signi cant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we de ne a global taxonomy to group the model based methods and discuss their main advantages and drawbacks.Peer ReviewedPostprint (published version

    Unsupervised 3D reconstruction and grouping of rigid and non-rigid categories

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we present an approach to jointly recover camera pose, 3D shape, and object and deformation type grouping, from incomplete 2D annotations in a multi-instance collection of RGB images. Our approach is able to handle indistinctly both rigid and non-rigid categories. This advances existing work, which only addresses the problem for one single object or, they assume the groups to be known a priori when multiple instances are handled. In order to address this broader version of the problem, we encode object deformation by means of multiple unions of subspaces, that is able to span from small rigid motion to complex deformations. The model parameters are learned via Augmented Lagrange Multipliers, in a completely unsupervised manner that does not require any training data at all. Extensive experimental evaluation is provided in a wide variety of synthetic and real scenarios, including rigid and non-rigid categories with small and large deformations. We obtain state-of-the-art solutions in terms of 3D reconstruction accuracy, while also providing grouping results that allow splitting the input images into object instances and their associated type of deformation.Peer ReviewedPostprint (author's final draft

    A scalable, efficient, and accurate solution to non-rigid structure from motion

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Most Non-Rigid Structure from Motion (NRSfM) solutions are based on factorization approaches that allow reconstructing objects parameterized by a sparse set of 3D points. These solutions, however, are low resolution and generally, they do not scale well to more than a few tens of points. While there have been recent attempts at bringing NRSfM to a dense domain, using for instance variational formulations, these are computationally demanding alternatives which require certain spatial continuity of the data, preventing their use for articulated shapes with large deformations or situations with multiple discontinuous objects. In this paper, we propose incorporating existing point trajectory low-rank models into a probabilistic framework for matrix normal distributions. With this formalism, we can then simultaneously learn shape and pose parameters using expectation maximization, and easily exploit additional priors such as known point correlations. While similar frameworks have been used before to model distributions over shapes, here we show that formulating the problem in terms of distributions over trajectories brings remarkable improvements, especially in generality and efficiency. We evaluate the proposed approach in a variety of scenarios including one or multiple objects, sparse or dense reconstructions, missing observations, mild or sharp deformations, and in all cases, with minimal prior knowledge and low computational cost.Peer ReviewedPostprint (author's final draft

    Monocular 3d Object Recognition

    Get PDF
    Object recognition is one of the fundamental tasks of computer vision. Recent advances in the field enable reliable 2D detections from a single cluttered image. However, many challenges still remain. Object detection needs timely response for real world applications. Moreover, we are genuinely interested in estimating the 3D pose and shape of an object or human for the sake of robotic manipulation and human-robot interaction. In this thesis, a suite of solutions to these challenges is presented. First, Active Deformable Part Models (ADPM) is proposed for fast part-based object detection. ADPM dramatically accelerates the detection by dynamically scheduling the part evaluations and efficiently pruning the image locations. Second, we unleash the power of marrying discriminative 2D parts with an explicit 3D geometric representation. Several methods of such scheme are proposed for recovering rich 3D information of both rigid and non-rigid objects from monocular RGB images. (1) The accurate 3D pose of an object instance is recovered from cluttered images using only the CAD model. (2) A global optimal solution for simultaneous 2D part localization, 3D pose and shape estimation is obtained by optimizing a unified convex objective function. Both appearance and geometric compatibility are jointly maximized. (3) 3D human pose estimation from an image sequence is realized via an Expectation-Maximization algorithm. The 2D joint location uncertainties are marginalized out during inference and 3D pose smoothness is enforced across frames. By bridging the gap between 2D and 3D, our methods provide an end-to-end solution to 3D object recognition from images. We demonstrate a range of interesting applications using only a single image or a monocular video, including autonomous robotic grasping with a single image, 3D object image pop-up and a monocular human MoCap system. We also show empirical start-of-art results on a number of benchmarks on 2D detection and 3D pose and shape estimation

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Disentangling the modes of variation in unlabelled data

    Get PDF
    Statistical methods are of paramount importance in discovering the modes of variation in visual data. The Principal Component Analysis (PCA) is probably the most prominent method for extracting a single mode of variation in the data. However, in practice, visual data exhibit several modes of variations. For instance, the appearance of faces varies in identity, expression, pose etc. To extract these modes of variations from visual data, several supervised methods, such as the TensorFaces relying on multilinear (tensor) decomposition (e.g., Higher Order SVD) have been developed. The main drawbacks of such methods is that they require both labels regarding the modes of variations and the same number of samples under all modes of variations (e.g., the same face under different expressions, poses etc.). Therefore, their applicability is limited to well-organised data, usually captured in well-controlled conditions. In this paper, we propose a novel general multilinear matrix decomposition method that discovers the multilinear structure of possibly incomplete sets of visual data in unsupervised setting (i.e., without the presence of labels). We also propose extensions of the method with sparsity and low-rank constraints in order to handle noisy data, captured in unconstrained conditions. Besides that, a graph-regularised variant of the method is also developed in order to exploit available geometric or label information for some modes of variations. We demonstrate the applicability of the proposed method in several computer vision tasks, including Shape from Shading (SfS) (in the wild and with occlusion removal), expression transfer, and estimation of surface normals from images captured in the wild
    • …
    corecore