86 research outputs found

    Structure tensor total variation

    Get PDF
    This is the final version of the article. Available from Society for Industrial and Applied Mathematics via the DOI in this record.We introduce a novel generic energy functional that we employ to solve inverse imaging problems within a variational framework. The proposed regularization family, termed as structure tensor total variation (STV), penalizes the eigenvalues of the structure tensor and is suitable for both grayscale and vector-valued images. It generalizes several existing variational penalties, including the total variation seminorm and vectorial extensions of it. Meanwhile, thanks to the structure tensor’s ability to capture first-order information around a local neighborhood, the STV functionals can provide more robust measures of image variation. Further, we prove that the STV regularizers are convex while they also satisfy several invariance properties w.r.t. image transformations. These properties qualify them as ideal candidates for imaging applications. In addition, for the discrete version of the STV functionals we derive an equivalent definition that is based on the patch-based Jacobian operator, a novel linear operator which extends the Jacobian matrix. This alternative definition allow us to derive a dual problem formulation. The duality of the problem paves the way for employing robust tools from convex optimization and enables us to design an efficient and parallelizable optimization algorithm. Finally, we present extensive experiments on various inverse imaging problems, where we compare our regularizers with other competing regularization approaches. Our results are shown to be systematically superior, both quantitatively and visually

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    A combined first and second order variational approach for image reconstruction

    Full text link
    In this paper we study a variational problem in the space of functions of bounded Hessian. Our model constitutes a straightforward higher-order extension of the well known ROF functional (total variation minimisation) to which we add a non-smooth second order regulariser. It combines convex functions of the total variation and the total variation of the first derivatives. In what follows, we prove existence and uniqueness of minimisers of the combined model and present the numerical solution of the corresponding discretised problem by employing the split Bregman method. The paper is furnished with applications of our model to image denoising, deblurring as well as image inpainting. The obtained numerical results are compared with results obtained from total generalised variation (TGV), infimal convolution and Euler's elastica, three other state of the art higher-order models. The numerical discussion confirms that the proposed higher-order model competes with models of its kind in avoiding the creation of undesirable artifacts and blocky-like structures in the reconstructed images -- a known disadvantage of the ROF model -- while being simple and efficiently numerically solvable.Comment: 34 pages, 89 figure

    Generating structured non-smooth priors and associated primal-dual methods

    Get PDF
    The purpose of the present chapter is to bind together and extend some recent developments regarding data-driven non-smooth regularization techniques in image processing through the means of a bilevel minimization scheme. The scheme, considered in function space, takes advantage of a dualization framework and it is designed to produce spatially varying regularization parameters adapted to the data for well-known regularizers, e.g. Total Variation and Total Generalized variation, leading to automated (monolithic), image reconstruction workflows. An inclusion of the theory of bilevel optimization and the theoretical background of the dualization framework, as well as a brief review of the aforementioned regularizers and their parameterization, makes this chapter a self-contained one. Aspects of the numerical implementation of the scheme are discussed and numerical examples are provided

    Image decomposition using a second-order variational model and wavelet shrinkage

    Get PDF
    The paper is devoted to the new model for image decomposition, that splits an image f into three components u+v+w, where u a piecewise-smooth or the "cartoon" component, v a texture component and w the noise part in variational approach. This decomposition model in fact incorporates the advantages of two preceding models: the second-order total variation minimization of Rudin-Osher-Fatemi (ROF2), and wavelet shrinkage for oscillatory functions. This decomposition model is presented as an extension of the three components decomposition algorithm of Aujol et al. in [Dual norms and image decomposition models, Int. J. Comput. Vis. 63(1)(2005) 85-104]. It also continues the idea introduced previously by authors in [Denoising 3D medical images using a second order variational model and wavelet shrinkage, Imag. Anal. and Rec., Lecture Notes in Computer Science, 7325(2012), 138-145], for two components decomposition model. The ROF2 model was first proposed by Bergounioux et al. in [A second-order model for image denoising, Set-Valued Anal. and Var. Anal., 18(2010), 277-306], it is an improved regularization method to overcome the undesirable staircasing effect. The wavelet shrinkage is well combined to separate the oscillating part due to texture from that due to noise. Experimental results validate the proposed algorithm and demonstrate that the image decomposition model presents effective and comparable performance to other previous models

    Image decomposition using a second-order variational model and wavelet shrinkage

    Get PDF
    The paper is devoted to the new model for image decomposition, that splits an image ff into three components u+v+ωu+v+\omega, with uu a piecewise-smooth or the ``cartoon'' component, vv a texture component and ω\omega the noise part in variational approach. This decomposition model is in fact incorporates the advantages of two preceding models: the second-order total variation minimization of Rudin-Osher-Fatemi (ROF2), and wavelet shrinkage for oscillatory functions. This decomposition model is presented as an extension of the three components decomposition algorithm of Aujol et al. in \cite{JAC}. It also continues the idea introduced previously by authors in \cite{TPB}, for two components decomposition model. The ROF2 model was first proposed by Bergounioux et al. in \cite{BP}, it is an improved regularization method to overcome the undesirable staircasing effect. The wavelet shrinkage is well combined to separate the oscillating part due to texture from that due to noise. Experimental results validate the proposed algorithm and demonstrate that the image decomposition model presents effective and comparable performance to other state-of-the-art models
    corecore