2,395 research outputs found

    A Synergistic Approach for Recovering Occlusion-Free Textured 3D Maps of Urban Facades from Heterogeneous Cartographic Data

    Get PDF
    In this paper we present a practical approach for generating an occlusion-free textured 3D map of urban facades by the synergistic use of terrestrial images, 3D point clouds and area-based information. Particularly in dense urban environments, the high presence of urban objects in front of the facades causes significant difficulties for several stages in computational building modeling. Major challenges lie on the one hand in extracting complete 3D facade quadrilateral delimitations and on the other hand in generating occlusion-free facade textures. For these reasons, we describe a straightforward approach for completing and recovering facade geometry and textures by exploiting the data complementarity of terrestrial multi-source imagery and area-based information

    Recovering occlusion-free textured 3D maps of urban facades by a synergistic use of terrestrial images, 3D point clouds and area-based information

    Get PDF
    In this paper we present a practical approach for generating an occlusion-free textured 3D map of urban facades by the synergistic use of terrestrial images, 3D point clouds and area-based information. Particularly in dense urban environments, the high presence of urban objects in front of the facades causes significant difficulties for several stages in computational building modeling. Major challenges lie on the one hand in extracting complete 3D facade quadrilateral delimitations and on the other hand in generating occlusion-free facade textures. For these reasons, we describe a straightforward approach for completing and recovering facade geometry and textures by exploiting the data complementarity of terrestrial multi-source imagery and area-based information

    3D Reconstruction of Indoor Corridor Models Using Single Imagery and Video Sequences

    Get PDF
    In recent years, 3D indoor modeling has gained more attention due to its role in decision-making process of maintaining the status and managing the security of building indoor spaces. In this thesis, the problem of continuous indoor corridor space modeling has been tackled through two approaches. The first approach develops a modeling method based on middle-level perceptual organization. The second approach develops a visual Simultaneous Localisation and Mapping (SLAM) system with model-based loop closure. In the first approach, the image space was searched for a corridor layout that can be converted into a geometrically accurate 3D model. Manhattan rule assumption was adopted, and indoor corridor layout hypotheses were generated through a random rule-based intersection of image physical line segments and virtual rays of orthogonal vanishing points. Volumetric reasoning, correspondences to physical edges, orientation map and geometric context of an image are all considered for scoring layout hypotheses. This approach provides physically plausible solutions while facing objects or occlusions in a corridor scene. In the second approach, Layout SLAM is introduced. Layout SLAM performs camera localization while maps layout corners and normal point features in 3D space. Here, a new feature matching cost function was proposed considering both local and global context information. In addition, a rotation compensation variable makes Layout SLAM robust against cameras orientation errors accumulations. Moreover, layout model matching of keyframes insures accurate loop closures that prevent miss-association of newly visited landmarks to previously visited scene parts. The comparison of generated single image-based 3D models to ground truth models showed that average ratio differences in widths, heights and lengths were 1.8%, 3.7% and 19.2% respectively. Moreover, Layout SLAM performed with the maximum absolute trajectory error of 2.4m in position and 8.2 degree in orientation for approximately 318m path on RAWSEEDS data set. Loop closing was strongly performed for Layout SLAM and provided 3D indoor corridor layouts with less than 1.05m displacement errors in length and less than 20cm in width and height for approximately 315m path on York University data set. The proposed methods can successfully generate 3D indoor corridor models compared to their major counterpart

    Realistic correction of sky-coloured points in Mobile Laser Scanning point clouds

    Get PDF
    The enrichment of the point clouds with colour images improves the visualisation of the data as well as the segmentation and recognition processes. Coloured point clouds are becoming increasingly common, however, the colour they display is not always as expected. Errors in the colouring of point clouds acquired with Mobile Laser Scanning are due to perspective in the camera image, different resolution or poor calibration between the LiDAR sensor and the image sensor. The consequences of these errors are noticeable in elements captured in images, but not in point clouds, such as the sky. This paper focuses on the correction of the sky-coloured points, without resorting to the images that were initially used to colour the whole point cloud. The proposed method consists of three stages. First the region of interest where the erroneously coloured points are accumulated, is selected. Second, the sky-coloured points are detected by calculating the colour distance in the Lab colour space to a sample of the sky-colour. And third, the colour of the sky-coloured detected points is restored from the colour of the nearby points. The method is tested in ten real case studies with their corresponding point clouds from urban and rural areas. In two case studies, sky-coloured points were assigned manually and the remaining eight case studies, the sky-coloured points are derived from the acquisition errors. The algorithm for sky-coloured points detection obtained an average F1-score of 94.7%. The results show a correct reassignment of colour, texture, and patterns, while improving the point cloud visualisation.Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGXunta de Galicia | Ref. ED481B-2019-061Xunta de Galicia | Ref. ED431C 2020/01Agencia Estatal de Investigación | Ref. PID2019-105221RB-C43Agencia Estatal de Investigación | Ref. PID2019-108816RB-I0

    INDOOR 3D MODELING AND FLEXIBLE SPACE SUBDIVISION FROM POINT CLOUDS

    Get PDF
    Indoor navigation can be a tedious process in a complex and unknown environment. It gets more critical when the first responders try to intervene in a big building after a disaster has occurred. For such cases, an accurate map of the building is among the best supports possible. Unfortunately, such a map is not always available, or generally outdated and imprecise, leading to error prone decisions. Thanks to advances in the laser scanning, accurate 3D maps can be built in relatively small amount of time using all sort of laser scanners (stationary, mobile, drone), although the information they provide is generally an unstructured point cloud. While most of the existing approaches try to extensively process the point cloud in order to produce an accurate architectural model of the scanned building, similar to a Building Information Model (BIM), we have adopted a space-focused approach. This paper presents our framework that starts from point-clouds of complex indoor environments, performs advanced processes to identify the 3D structures critical to navigation and path planning, and provides fine-grained navigation networks that account for obstacles and spatial accessibility of the navigating agents. The method involves generating a volumetric-wall vector model from the point cloud, identifying the obstacles and extracting the navigable 3D spaces. Our work contributes a new approach for space subdivision without the need of using laser scanner positions or viewpoints. Unlike 2D cell decomposition or a binary space partitioning, this work introduces a space enclosure method to deal with 3D space extraction and non-Manhattan World architecture. The results show more than 90% of spaces are correctly extracted. The approach is tested on several real buildings and relies on the latest advances in indoor navigation

    Desenvolvemento de modelos de información de infraestructuras segundo estándares abertos e parametrización automática a partir de datos xeomáticos.

    Get PDF
    It seeks to develop procedures that allow generating information models of these structures, created from the relevant information of the point clouds obtained with these systems. For this purpose, the BIM standards for civil engineering structures, both currently available and those that will be published for the duration of the thesis, will be exploited and adopted. Information modeling techniques will be used in these standards, with the aim of obtaining a system that allows modeling the structures automatically. The models will also be made compatible with other methodologies designed for BIM, whose purpose is to take full advantage of the information available for management and maintenance tasks. Meeting these objectives, an automatic modeling system will be developed according to the BIM standards for transport infrastructures, suitable for automatic feeding from geomatic data and remote sensing, which is in turn integrable into management and maintenance systems for these types of structures of civil engineering.Esta tesis busca el desarrollo de metodologías para la exportación de la información geomática de infraestructuras de transporte, particularmente estructuras ferroviarias y carreteras, obtenida mediante tecnologías de mapeado móvil. Se busca desarrollar procedimientos que permitan generar modelos de información de estas estructuras, creados a partir de la información relevante de las nubes de puntos obtenidas con estos sistemas. Con este propósito, se explotarán y adoptarán los estándares BIM para estructuras de ingeniería civil, tanto los actualmente disponibles como aquellos que serán publicados durante la duración de la tesis. Se utilizarán técnicas de modelado de información en estos estándares, con objetivo de obtener un sistema que permita realizar un modelado de las estructuras de manera automática. Se llevará a cabo también la compatibilización los modelos con otras metodologías diseñadas para BIM, cuyo propósito es el aprovechamiento total de la información disponible para tareas de gestión y mantenimiento. Cumpliendo estos objetivos se desarrollará un sistema automático de modelado según los estándares BIM para infraestructuras de transporte, apto para su alimentación automática a partir de datos geomáticos y teledetección, el cual es a su vez integrable en sistemas de gestión y mantenimiento para este tipo de estructuras de ingeniería civil.Esta tese busca o desenvolvemento de metodoloxías para a exportación da información xeomática de infraestruturas de transporte, particularmente estruturas ferroviarias e estradas, obtida mediante tecnoloxías de mapeado móbil. A tese busca o desenvolvemento de procedementos que permitan xerar modelos de información destas estruturas, creados a partir da información relevante das nubes de puntos obtidas con estes sistemas. Con este propósito, se explotarán e adoptarán os estándares BIM para estruturas de enxeñería civil, tanto os actualmente dispoñibles como aqueles que serán publicados durante a duración da tese. Utilizaranse técnicas de modelado de información nestes estándares, con obxectivo de obter un sistema que permita realizar un modelado das estruturas de maneira automática. Levarase a cabo tamén a compatibilización dos modelos con outras metodoloxías diseñadas para BIM, cuxo propósito é o aproveitamento total da información dispoñible para tarefas de xestión e mantemento. Cumplindo estes obxectivos se desenvolverá un sistema automático de modelado segundo os estándares BIM para infraestruturas de transporte, apto para a súa alimentación automática a partir de datos xeomáticos e teledetección, o cal é a súa vez integrable en sistemas de xestión e mantemento para este tipo de estruturas de enxeñería civil

    Laser Mobile Mapping Standards and Applications in Transportation

    Get PDF
    This report describes the work that was done to support the development of a chapter for the INDOT Survey Manual on Mobile Mapping. The work includes experiments that were done, data that was collected, analysis that was carried out, and conclusions that were drawn about accuracy of Mobile Terrestrial Laser Scanning (MTLS) systems. The resulting Manual chapter, located in the appendix, defines standards and procedures for preparing, collecting, editing, delivering, exploiting, and archiving electronic mapping data that is created for Indiana Department of Transportation (INDOT). The purpose of the standards and procedures within this manual is to obtain statewide uniformity within the INDOT combined Aerial/Ground Survey process, to establish and maintain MTLS Standards for INDOT and contracted consultants, and allow for all of the project data to be effectively managed from conception to completion. These standards apply to all projects delivered to INDOT by contracted consulting firms, or exchanged internally within INDOT or between state agencies. The standards and procedures are the result of mobile terrestrial laser scanning surveys of two test sites - one urban and one freeway - created for this project. After establishing reference control points on the sites, each site was surveyed by four mobile terrestrial laser scanning vendors. The results from the vendor data over the test sites, in addition to information in published literature, are the basis for the specifications manual. The proposed chapter for the Survey Manual is in Appendix E of this report
    • …
    corecore