776 research outputs found

    Recoverable robust single day aircraft maintenance routing problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Aircraft maintenance planning is of critical importance to the safe and efficient operations of an airline. It is common to solve the aircraft routing and maintenance planning problems many months in advance, with the solution spanning multiple days. An unfortunate consequence of this approach is the possible infeasibility of the maintenance plan due to frequent perturbations occurring in operations. There is an emerging concept that focuses on the generation of aircraft routes for a single day to ensure maintenance coverage that night, alleviating the effects of schedule perturbations from preceding days. In this paper, we present a novel approach to ensure that a sufficient number of aircraft routes are provided each day so maintenance critical aircraft receive maintenance that night. By penalising the under supply of routes terminating at maintenance stations from each overnight airport, we construct a single day routing to provide the best possible maintenance plan. This single day aircraft maintenance routing problem (SDAMRP) is further protected from disruptions by applying the recoverable robustness framework. To efficiently solve the recoverable robust SDAMRP acceleration techniques, such as identifying Pareto-optimal cuts and a trust region approach, have been applied. The SDAMRP is evaluated against a set of flight schedules and the results demonstrate a significantly improved aircraft maintenance plan. Further, the results demonstrate the magnitude of recoverability improvement that is achieved by employing recoverable robustness to the SDAMRP.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex SystemsNatural Sciences and Engineering Research Council of Canada

    The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordThe tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to satisfy operational constraints. The aim of this paper is to develop an operationally flexible method, based upon the one-day routes business model, to compute tail assignments that satisfy short-range—within the next three days—aircraft maintenance requirements. While maintenance plans commonly span multiple days, the methods used to compute tail assignments for the given plans can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by using solutions from the one-day routes aircraft maintenance routing approach as input. The daily tail assignment problem is solved with an objective to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A computational study will be performed to assess the performance of exact and heuristic solution algorithms that modify the input lines-of-flight to reduce maintenance misalignments. The daily tail assignment problem and the developed algorithms are demonstrated to compute solutions that effectively satisfy maintenance requirements when evaluated using input data collected from three different airlines

    Aircraft Maintenance Routing Problem – A Literature Survey

    Get PDF
    The airline industry has shown significant growth in the last decade according to some indicators such as annual average growth in global air traffic passenger demand and growth rate in the global air transport fleet. This inevitable progress makes the airline industry challenging and forces airline companies to produce a range of solutions that increase consumer loyalty to the brand. These solutions to reduce the high costs encountered in airline operations, prevent delays in planned departure times, improve service quality, or reduce environmental impacts can be diversified according to the need. Although one can refer to past surveys, it is not sufficient to cover the rich literature of airline scheduling, especially for the last decade. This study aims to fill this gap by reviewing the airline operations related papers published between 2009 and 2019, and focus on the ones especially in the aircraft maintenance routing area which seems a promising branch

    The Recoverable Robust Tail Assignment Problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Institute for Operations Research and the Management Sciences (INFORMS) via the DOI in this record Schedule disruptions are commonplace in the airline industry with many flight-delaying events occurring each day. Recently there has been a focus on introducing robustness into airline planning stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved using column generation in the master and subproblems of the Benders decomposition. We implement a two-phase algorithm for the Benders decomposition incorporating the Magnanti-Wong [21] enhancement techniques. The RRTAP includes costs due to flight delays, cancellation, and passenger rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare our tail assignment solution with the tail assignment generated using a connection cost function presented in Gr¨onkvist [15]. Using airline data we demonstrate that by developing a better tail assignment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.Australian Research Council Centre of Excellence for MathematicsMASCOS

    Combining robustness and recovery for airline schedules

    Get PDF
    In this thesis, we address different aspects of the airline scheduling problem. The main difficulty in this field lies in the combinatorial complexity of the problems. Furthermore, as airline schedules are often faced with perturbations called disruptions (bad weather conditions, technical failures, congestion, crew illness…), planning for better performance under uncertainty is an additional dimension to the complexity of the problem. Our main focus is to develop better schedules that are less sensitive to perturbations and, when severe disruptions occur, are easier to recover. The former property is known as robustness and the latter is called recoverability. We start the thesis by addressing the problem of recovering a disrupted schedule. We present a general model, the constraint-specific recovery network, that encodes all feasible recovery schemes of any unit of the recovery problem. A unit is an aircraft, a crew member or a passenger and its recovery scheme is a new route, pairing or itinerary, respectively. We show how to model the Aircraft Recovery Problem (ARP) and the Passenger Recovery Problem (PRP), and provide computational results for both of them. Next, we present a general framework to solve problems subject to uncertainty: the Uncertainty Feature Optimization (UFO) framework, which implicitly embeds the uncertainty the problem is prone to. We show that UFO is a generalization of existing methods relying on explicit uncertainty models. Furthermore, we show that by implicitly considering uncertainty, we not only save the effort of modeling an explicit uncertainty set: we also protect against possible errors in its modeling. We then show that combining existing methods using explicit uncertainty characterization with UFO leads to more stable solutions with respect to changes in the noise's nature. We illustrate these concepts with extensive simulations on the Multi-Dimensional Knapsack Problem (MDKP). We then apply the UFO to airline scheduling. First, we study how robustness is defined in airline scheduling and then compare robustness of UFO models against existing models in the literature. We observe that the performance of the solutions closely depend on the way the performance is evaluated. UFO solutions seem to perform well globally, but models using explicit uncertainty have a better potential when focusing on a specific metric. Finally, we study the recoverability of UFO solutions with respect to the recovery algorithm we develop. Computational results on a European airline show that UFO solutions are able to significantly reduce recovery costs

    The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints

    Get PDF
    Abstract The tail assignment problem is a critical part of the airline planning process that assigns specific aircraft to sequences of flights, called lines-of-flight, to satisfy operational constraints. The aim of this paper is to develop an operationally flexible method, based upon the one-day routes business model, to compute tail assignments that satisfy short-range—within the next three days—aircraft maintenance requirements. While maintenance plans commonly span multiple days, the methods used to compute tail assignments for the given plans can be overly complex and provide little recourse in the event of schedule perturbations. The presented approach addresses operational uncertainty by using solutions from the one-day routes aircraft maintenance routing approach as input. The daily tail assignment problem is solved with an objective to satisfy maintenance requirements explicitly for the current day and implicitly for the subsequent two days. A computational study will be performed to assess the performance of exact and heuristic solution algorithms that modify the input lines-of-flight to reduce maintenance misalignments. The daily tail assignment problem and the developed algorithms are demonstrated to compute solutions that effectively satisfy maintenance requirements when evaluated using input data collected from three different airlines

    Economies of scale in recoverable robust maintenance location routing for rolling stock

    Get PDF
    We consider the problem of locating maintenance facilities in a railway setting. Different facility sizes can be chosen for each candidate location and for each size there is an associated annual facility costs that can capture economies of scale in facility size. Because of the strategic nature of facility location, the opened facilities should be able to handle the current maintenance demand, but also the demand for any of the scenarios that can occur in the future. These scenarios capture changes such as changes to the line plan and the introduction of new rolling stock types. We allow recovery in the form of opening additional facilities, closing facilities, and increasing the facility size for each scenario. We provide a two-stage robust programming formulation. In the first-stage, we decide where to open what size of facility. In the second-stage, we solve a NP-hard maintenance location routing problem. We reformulate the problem as a mixed integer program that can be used to make an efficient column-and-constraint generation algorithm. To show that our algorithm works on practical sized instances, and to gain managerial insights, we perform a case study with instances from the Netherlands Railways. A counter intuitive insight is that economies of scale only play a limited role and that it is more important to reduce the transportation cost by building many small facilities, rather than a few large ones to profit from economies of scale

    Robust rolling stock in rapid transit network

    Get PDF
    This paper focuses on the railway rolling stock circulation problem in rapid transit networks, in which frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The main complicating issue is the fact that the available capacity at depot stations is very low, and both capacity and rolling stock are shared between different train lines. This forces the introduction of empty train movements and rotation maneuvers, to ensure sufficient station capacity and rolling stock availability. However, these shunting operations may sometimes be difficult to perform and can easily malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operation will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Critic trains, defined as train services that come through stations that have a large number of passengers arriving at the platform during rush hours, are also introduced. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results of the model, achieved in approximately 1 min, have been received positively by RENFE planner

    Approaches to Incorporating Robustness into Airline Scheduling

    Get PDF
    The airline scheduling process used by major airlines today aims to develop opti- mal schedules which maximize revenue. However, these schedules are often far from \optimal" once deployed in the real world because they do not accurately take into account possible weather, air tra c control (ATC), and other disruptions that can occur during operation. The resulting ight delays and cancellations can cause sig- ni cant revenue loss, not to mention service disruptions and customer dissatisfaction. A novel approach to addressing this problem is to design schedules that are robust to schedule disruptions and can be degraded at any airport location or in any region with minimal impact on the entire schedule. This research project suggests new methods for creating more robust airline schedules which can be easily recovered in the face of irregular operations. We show how to create multiple optimal solutions to the Aircraft Routing problem and suggest how to evaluate robustness of those solutions. Other potential methods for increasing robustness of airline schedules are reviewed.NASA grant NAG1-218
    • …
    corecore