541 research outputs found

    Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis

    Get PDF
    An all optical, non-destructive method for monitoring neural activity has been proposed and its performance in detection has been analyzed computationally. The proposed method is based on excitation of Surface Plasmon Resonance (SPR) through the structure of optical fibers. The sensor structure consists of a multimode optical fiber where, the cladding of fiber has been removed and thin film of gold structure has been deposited on the surface. Impinging the laser light with appropriate wavelength inside the fiber and based on the total internal reflection, the evanescent wave will excite surface plasmons in the gold thin film. The absorption of light by surface plasmons in the gold structure is severely dependent on the dielectric properties at its vicinity. The electrical activity of neural cells (action potential) can modulate the dielectric properties at its vicinity and hence can modify the absorption of light inside the optical fiber. We have computationally analyzed the performance of the proposed sensor with different available geometries using Finite Element Method (FEM). In this regard, we have shown that the optical response of proposed sensor will track the action potential of the neuron at its vicinity. Based on different geometrical structure, the sensor has absorption in different regions of visible spectrum

    Corrigendum: Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis

    Get PDF
    An all optical, non-destructive method for monitoring neural activity has been proposed and its performance in detection has been analyzed computationally. The proposed method is based on excitation of Surface Plasmon Resonance (SPR) through the structure of optical fibers. The sensor structure consists of a multimode optical fiber where, the cladding of fiber has been removed and thin film of gold structure has been deposited on the surface. Impinging the laser light with appropriate wavelength inside the fiber and based on the total internal reflection, the evanescent wave will excite surface plasmons in the gold thin film. The absorption of light by surface plasmons in the gold structure is severely dependent on the dielectric properties at its vicinity. The electrical activity of neural cells (action potential) can modulate the dielectric properties at its vicinity and hence can modify the absorption of light inside the optical fiber. We have computationally analyzed the performance of the proposed sensor with different available geometries using Finite Element Method (FEM). In this regard, we have shown that the optical response of proposed sensor will track the action potential of the neuron at its vicinity. Based on different geometrical structure, the sensor has absorption in different regions of visible spectrum

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    The Boston University Photonics Center annual report 2016-2017

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2016-2017 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has undoubtedly been the Photonics Center’s best year since I became Director 10 years ago. In the following pages, you will see highlights of the Center’s activities in the past year, including more than 100 notable scholarly publications in the leading journals in our field, and the attraction of more than 22 million dollars in new research grants/contracts. Last year I had the honor to lead an international search for the first recipient of the Moustakas Endowed Professorship in Optics and Photonics, in collaboration with ECE Department Chair Clem Karl. This professorship honors the Center’s most impactful scholar and one of the Center’s founding visionaries, Professor Theodore Moustakas. We are delighted to haveawarded this professorship to Professor Ji-Xin Cheng, who joined our faculty this year.The past year also marked the launch of Boston University’s Neurophotonics Center, which will be allied closely with the Photonics Center. Leading that Center will be a distinguished new faculty member, Professor David Boas. David and I are together leading a new Neurophotonics NSF Research Traineeship Program that will provide $3M to promote graduate traineeships in this emerging new field. We had a busy summer hosting NSF Sites for Research Experiences for Undergraduates, Research Experiences for Teachers, and the BU Student Satellite Program. As a community, we emphasized the theme of “Optics of Cancer Imaging” at our annual symposium, hosted by Darren Roblyer. We entered a five-year second phase of NSF funding in our Industry/University Collaborative Research Center on Biophotonic Sensors and Systems, which has become the centerpiece of our translational biophotonics program. That I/UCRC continues to focus on advancing the health care and medical device industries

    A comprehensive deep learning method for empirical spectral prediction and its quantitative validation of nano-structured dimers

    Get PDF
    Nanophotonics exploits the best of photonics and nanotechnology which has transformed optics in recent years by allowing subwavelength structures to enhance light-matter interactions. Despite these breakthroughs, design, fabrication, and characterization of such exotic devices have remained through iterative processes which are often computationally costly, memory-intensive, and time-consuming. In contrast, deep learning approaches have recently shown excellent performance as practical computational tools, providing an alternate avenue for speeding up such nanophotonics simulations. This study presents a DNN framework for transmission, reflection, and absorption spectra predictions by grasping the hidden correlation between the independent nanostructure properties and their corresponding optical responses. The proposed DNN framework is shown to require a sufficient amount of training data to achieve an accurate approximation of the optical performance derived from computational models. The fully trained framework can outperform a traditional EM solution using on the COMSOL Multiphysics approach in terms of computational cost by three orders of magnitude. Furthermore, employing deep learning methodologies, the proposed DNN framework makes an effort to optimise design elements that influence the geometrical dimensions of the nanostructure, offering insight into the universal transmission, reflection, and absorption spectra predictions at the nanoscale. This paradigm improves the viability of complicated nanostructure design and analysis, and it has a lot of potential applications involving exotic light-matter interactions between nanostructures and electromagnetic fields. In terms of computational times, the designed algorithm is more than 700 times faster as compared to conventional FEM method (when manual meshing is used). Hence, this approach paves the way for fast yet universal methods for the characterization and analysis of the optical response of nanophotonic systems

    The Boston University Photonics Center annual report 2015-2016

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of “Frontiers in Plasmonics as Enabling Science in Photonics and Beyond” at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    Fabrication Of An Electronic Nose And Its Application For The Verification Of Eurycoma Longifolia Extracts [TP159.C46 I82 2007 f rb].

    Get PDF
    Hidung elekronik yang berasaskan penderia penimbang mikro hablur kuarza menggunakan etil selulosa, lipid (dioktil fosfat (DOP), trioktil metil ammonium klorida (TOMA), olil amina (OAm)) dan bahan fasa pegun kromatografi gas (Apiezon L (APZL),polipropilin glikol 1200 (PPG 1200), polietilina glikol 1000 (PEG 1000), polietilina glikol 4000 (PEG 4000), poli(bissanopropil-siloksana) (OV-275) dan dietilina glikolsuksinat (DEGS) sebagai membran penderia untuk menganalisis ekstrak daripada Eurycoma longifolia (Tongkat Ali) telah dibina. An electronic nose based on a quartz crystal microbalance array sensor using ethylcellulose (EC), lipids ((dioctyl phosphate (DOP), trioctyl methyl ammonium chloride (TOMA), oleyl amine (OAm)) and gas chromatography (GC) stationary phase materials ((Apiezon-L (APZ-L), polypropylene glycol 1200 (PPG 1200), polyethylene glycol 1000 (PEG 1000), polyethylene glycol 4000 (PEG 4000), poly(biscyanopropyl-siloxane) (OV-275) and diethylene glycol succinate (DEGS)) as sensing membrane for the analysis ofextracts of Eurycoma longifolia (Tongkat Ali) was develope

    The Boston University Photonics Center annual report 2012-2013

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2012-2013 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center during the period July 2012 through June 2013. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. The Photonics Center continues to grow as an international leader in photonics research, while executing the Center’s strategic plan and serving as a university-wide resource for several affiliate Centers. For more information about the strategic plan, read the Photonics Center Strategic Plan section on page 10. In research, Photonics Center faculty published nearly 150 journal papers spanning the field of photonics. A number of awards for outstanding achievement in education and research were presented to Photonics Center faculty members, including a Peter Paul Professorship for Professor Xue Han, an NSF Career Award for Professor Ajay Joshi, and the 2012 Innovator of the Year Award from Boston University for Professor Theodore Moustakas. New external grant funding for the 2012- 2013 fiscal year totaled over $21.8M. For more information on our research activities, read the Research section on page 24. In technology development, the Photonics Center has turned a chapter, by completing the transition from a focus on Defense/ Security applications to a focus on the healthcare market sector. The commercial sector is expected to energize the technology development efforts for the foreseeable future, but the roots in defense/security are still important and the Center will continue to pursue new research grants in this area. For more information on our technology development program and on specific projects, read the Technology Development section on page 45. In education, 20 Photonics Center graduate students received Ph.D. diplomas. Photonics Center faculty taught 32 photonics courses. The Center supported a Research Experiences for Teachers (RET) site in Biophotonic Sensors and Systems for 10 middle school and high school teachers. The Photonics Center sponsored the Herbert J. Berman “Future of Light” Prize at the University’s Scholars Day. For more on our education programs, read the Education section on page 54. In commercialization, Boston University’s Business Innovation Center (BIC) currently hosts seven technology start-up companies. There is a healthy turnover in the Innovation Center space with a total of 19 companies residing at BIC over the past year. The mix of companies includes: life sciences, biotechnology, medical devices, photonics, and clean energy; and nine of the 19 companies originated from within BU. All the BIC tenants are engaged in the commercialization of new technologies of importance to society and all are active in the BU community in terms of offering internships, employment opportunities or research collaborations. For more information about Business Innovation Center activities, read the Business Innovation Center chapter in the Facilities and Equipment section on page 66

    The Boston University Photonics Center annual report 2012-2013

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2012-2013 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center during the period July 2012 through June 2013. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. The Photonics Center continues to grow as an international leader in photonics research, while executing the Center’s strategic plan and serving as a university-wide resource for several affiliate Centers. For more information about the strategic plan, read the Photonics Center Strategic Plan section on page 10. In research, Photonics Center faculty published nearly 150 journal papers spanning the field of photonics. A number of awards for outstanding achievement in education and research were presented to Photonics Center faculty members, including a Peter Paul Professorship for Professor Xue Han, an NSF Career Award for Professor Ajay Joshi, and the 2012 Innovator of the Year Award from Boston University for Professor Theodore Moustakas. New external grant funding for the 2012- 2013 fiscal year totaled over $21.8M. For more information on our research activities, read the Research section on page 24. In technology development, the Photonics Center has turned a chapter, by completing the transition from a focus on Defense/ Security applications to a focus on the healthcare market sector. The commercial sector is expected to energize the technology development efforts for the foreseeable future, but the roots in defense/security are still important and the Center will continue to pursue new research grants in this area. For more information on our technology development program and on specific projects, read the Technology Development section on page 45. In education, 20 Photonics Center graduate students received Ph.D. diplomas. Photonics Center faculty taught 32 photonics courses. The Center supported a Research Experiences for Teachers (RET) site in Biophotonic Sensors and Systems for 10 middle school and high school teachers. The Photonics Center sponsored the Herbert J. Berman “Future of Light” Prize at the University’s Scholars Day. For more on our education programs, read the Education section on page 54. In commercialization, Boston University’s Business Innovation Center (BIC) currently hosts seven technology start-up companies. There is a healthy turnover in the Innovation Center space with a total of 19 companies residing at BIC over the past year. The mix of companies includes: life sciences, biotechnology, medical devices, photonics, and clean energy; and nine of the 19 companies originated from within BU. All the BIC tenants are engaged in the commercialization of new technologies of importance to society and all are active in the BU community in terms of offering internships, employment opportunities or research collaborations. For more information about Business Innovation Center activities, read the Business Innovation Center chapter in the Facilities and Equipment section on page 66
    corecore