2,107 research outputs found

    Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several protein-protein interaction studies have been performed for the yeast <it>Saccharomyces cerevisiae </it>using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives.</p> <p>Results</p> <p>Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient-sensing and metabolic regulatory signal transduction pathways (STP) operating in <it>Saccharomyces cerevisiae</it>. The reconstructed STP network includes a full protein-protein interaction network including the key nodes Snf1, Tor1, Hog1 and Pka1. The network includes a total of 623 structural open reading frames (ORFs) and 779 protein-protein interactions. A number of proteins were identified having interactions with more than one of the protein kinases. The fully reconstructed interaction network includes all the information available in separate databases for all the proteins included in the network (nodes) and for all the interactions between them (edges). The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner.</p> <p>Conclusions</p> <p>The reported fully annotated interaction model serves as a platform for integrated systems biology studies of nutrient sensing and regulation in <it>S. cerevisiae</it>. Furthermore, we propose this annotated reconstruction as a first step towards generation of an extensive annotated protein-protein interaction network of signal transduction and metabolic regulation in this yeast.</p

    Metabolic-flux dependent regulation of microbial physiology

    Get PDF
    According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells

    Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae

    Get PDF
    Nutrient sensing and coordination of metabolic pathways are crucial functions for living cells. A combined analysis of the yeast transcriptome, phosphoproteome and metabolome is used to investigate the interactions between the Snf1 and TORC1 pathways under nutrient-limited conditions

    Systems analysis of host-parasite interactions.

    Get PDF
    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies

    Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity

    Get PDF
    Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurements and the SMRN to make inferences on the sensitivity of enzymes to their regulators. Generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.P30 CA008748 - NCI NIH HHS; R01 GM121950 - NIGMS NIH HH

    Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratorily versatile bacterium Shewanella oneidensis

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nucleic Acids Research 40 (2012): 7132-7149, doi:10.1093/nar/gks467.The capacity of microorganisms to respond to variable external conditions requires a coordination of environment-sensing mechanisms and decision-making regulatory circuits. Here, we seek to understand the interplay between these two processes by combining high-throughput measurement of time-dependent mRNA profiles with a novel computational approach that searches for key genetic triggers of transcriptional changes. Our approach helped us understand the regulatory strategies of a respiratorily versatile bacterium with promising bioenergy and bioremediation applications, Shewanella oneidensis, in minimal and rich media. By comparing expression profiles across these two conditions, we unveiled components of the transcriptional program that depend mainly on the growth phase. Conversely, by integrating our time-dependent data with a previously available large compendium of static perturbation responses, we identified transcriptional changes that cannot be explained solely by internal network dynamics, but are rather triggered by specific genes acting as key mediators of an environment-dependent response. These transcriptional triggers include known and novel regulators that respond to carbon, nitrogen and oxygen limitation. Our analysis suggests a sequence of physiological responses, including a coupling between nitrogen depletion and glycogen storage, partially recapitulated through dynamic flux balance analysis, and experimentally confirmed by metabolite measurements. Our approach is broadly applicable to other systems.Office of Science (BER), U.S. Department of Energy [DE-FG02-07ER64388 to D.S. and DE-FG02- 08ER64511 to M.H.S.]; National Aeronautics and Space Administration, NASA Astrobiology Institute [NNA08CN84A to D.S.]

    Functional metabolomics describes the yeast biosynthetic regulome

    Get PDF
    Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important for chromatin dynamics, translation, and transport, contribute to biosynthetic metabolism. Specific amino acid signatures characterize genes of similar function. This enabled us to exploit functional metabolomics to connect metabolic regulators to their effectors, as exemplified by TORC1, whose inhibition in exponentially growing cells is shown to match an interruption in endomembrane transport. Providing orthogonal information compared to physical and genetic interaction networks, metabolomic signatures cluster more than half of the so far uncharacterized yeast genes and provide functional annotation for them. A major part of coding genes is therefore participating in gene-metabolism interactions that expose the metabolism regulatory network and enable access to an underexplored space in gene function
    corecore