799 research outputs found

    Underwater Photogrammetry for Archaeology

    Get PDF

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization

    ULTRA CLOSE-RANGE DIGITAL PHOTOGRAMMETRY AS A TOOL TO PRESERVE, STUDY, AND SHARE SKELETAL REMAINS

    Get PDF
    Skeletal collections around the world hold valuable and intriguing knowledge about humanity. Their potential value could be fully exploited by overcoming current limitations in documenting and sharing them. Virtual anthropology provides effective ways to study and value skeletal collections using three-dimensional (3D) data, e.g. allowing powerful comparative and evolutionary studies, along with specimen preservation and dissemination. CT- and laser scanning are the most used techniques for three-dimensional reconstruction. However, they are resource-intensive and, therefore, difficult to be applied to large samples or skeletal collections. Ultra close-range digital photogrammetry (UCR-DP) enables photorealistic 3D reconstructions from simple photographs of the specimen. However, it is the least used method in skeletal anthropology and the lack of appropriate protocols often limit the quality of its outcomes. This Ph.D. thesis explored UCR-DP application in skeletal anthropology. The state-of-the-art of this technique was studied, and a new approach based on cloud computing was proposed and validated against current gold standards. This approach relies on the processing capabilities of remote servers and a free-for-academic use software environment; it proved to produce measurements equivalent to those of osteometry and, in many cases, they were more precise than those of CT-scanning. Cloud-based UCR-DP allowed the processing of multiple 3D models at once, leading to a low-cost, quick, and effective 3D production. The technique was successfully used to digitally preserve an initial sample of 534 crania from the skeletal collections of the Museo Sardo di Antropologia ed Etnografia (MuSAE, UniversitĂ  degli Studi di Cagliari). Best practices in using the technique for skeletal collection dissemination were studied and several applications were developed including MuSAE online virtual tours, virtual physical anthropology labs and distance learning, durable online dissemination, and values-led participatorily designed interactive and immersive exhibitions at the MuSAE. The sample will be used in a future population study of Sardinian skeletal characteristics from the Neolithic to modern times. In conclusion, cloud-based UCR-DP offers many significant advantages over other 3D scanning techniques: greater versatility in terms of application range and technical implementation, scalability, photorealistic restitution, reduced requirements relating to hardware, labour, time, and cost, and is, therefore, the best choice to document and value effectively large skeletal samples and collections

    SfM for Orthophoto Generation: A Winning Approach for Cultural Heritage Knowledge

    Get PDF
    3D detailed models derived from digital survey techniques have increasingly developed and focused in many field of application. The high detailed content and accuracy of such models make them so attractive and usable for large sets of purposes in Cultural Heritage. The present paper focuses on one of the main techniques used nowadays for Cultural Heritage survey and documentation: the image matching approach or Structure from Motion (SfM) technique. According to the low cost nature and the rich content of derivable information, these techniques are extremely strategic in poor available resources sectors such as Cultural Heritage documentation. <br><br> After an overview of the employed algorithms and used approaches of SfM computer vision based techniques, the paper is focused in a critical analysis of the strategy used by two common employed software: the commercial suite Agisoft Photoscan and the open source tool MicMac realized by IGN France. The experimental section is focused on the description of applied tests (from RPAS data to terrestrial acquisitions), purposed to compare different solutions in various featured study cases. Finally, the accuracy assessment of the achieved products is compared and analyzed according to the strategy employed by the studied software

    Seeing Archaeology In 3D: Digital Spatial Vision

    Full text link
    3D digital archaeology is a growing subfield of archaeological practice. This paper assesses the role 3D archaeology in archaeological theory and practice employs, particularly in reference to the ways of seeing. Digital reconstructions themselves occupy a particular niche as manipulatable representations of archaeological contexts, enabling them to convey information and interpretation in ways previously impossible in the field. Using these new tools allows archaeologists to see spatial data in new ways and to therefore more fully explore and interpret it. Low cost methods of 3D model production, including new commercial structured light scanning device, are employed within previously excavated architectural contexts of ancient Pompeii to explore the feasibility and benefits of 3D archaeology's ways of seeing. 3D archaeology is shown to enable exploratory data analysis throughout the archaeological process

    A 3D Digital Approach to the Stylistic and Typo-Technological Study of Small Figurines from Ayia Irini, Cyprus

    Get PDF
    The thesis aims to develop a 3D digital approach to the stylistic and typo-technological study of coroplastic, focusing on small figurines. The case study to test the method is a sample of terracotta statuettes from an assemblage of approximately 2000 statues and figurines found at the beginning of the 20th century in a rural open-air sanctuary at Ayia Irini (Cyprus) by the archaeologists of the Swedish Cyprus Expedition. The excavators identified continuity of worship at the sanctuary from the Late Cypriot III (circa 1200 BC) to the end of the Cypro-Archaic II period (ca. 475 BC). They attributed the small figurines to the Cypro-Archaic I-II. Although the excavation was one of the first performed through the newly established stratigraphic method, the archaeologists studied the site and its material following a traditional, merely qualitative approach. Theanalysis of the published results identified a classification of the material with no-clear-cut criteria, and their overlap between types highlights ambiguities in creating groups and classes. Similarly, stratigraphic arguments and different opinions among archaeologists highlight the need for revising. Moreover, pastlegislation allowed the excavators to export half of the excavated antiquities, creating a dispersion of the assemblage. Today, the assemblage is still partly exhibited at the Cyprus Museum in Nicosia and in four different museums in Sweden. Such a setting prevents to study, analyse and interpret the assemblageholistically. This research proposes a 3D chaîne opératoire methodology to study the collection’s small terracotta figurines, aiming to understand the context’s function and social role as reflected by the classification obtained with the 3D digital approach. The integration proposed in this research of traditional archaeological studies, and computer-assisted investigation based on quantitative criteria, identified and defined with 3D measurements and analytical investigations, is adopted as a solution to the biases of a solely qualitative approach. The 3D geometric analysis of the figurines focuses on the objects’ shape and components, mode of manufacture, level of expertise, specialisation or skills of the craftsman and production techniques. The analysis leads to the creation of classes of artefacts which allow archaeologists to formulate hypotheses on the production process, identify a common production (e.g., same hand, same workshop) and establish a relative chronological sequence. 3D reconstruction of the excavation’s area contributes to the virtual re-unification of the assemblage for its holistic study, the relative chronological dating of the figurines and the interpretation of their social and ritual purposes. The results obtained from the selected sample prove the efficacy of the proposed 3D approach and support the expansion of the analysis to the whole assemblage, and possibly initiate quantitative and systematic studies on Cypriot coroplastic production

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications
    • …
    corecore