2,528 research outputs found

    Reconstruction of Full Rank Algebraic Branching Programs

    Get PDF
    An algebraic branching program (ABP) A can be modelled as a product expression X_1 X_2 ... X_d, where X_1 and X_d are 1 x w and w x 1 matrices respectively, and every other X_k is a w x w matrix; the entries of these matrices are linear forms in m variables over a field F (which we assume to be either Q or a field of characteristic poly(m)). The polynomial computed by A is the entry of the 1 x 1 matrix obtained from the product X_1 X_2 ... X_d. We say A is a full rank ABP if the w^2(d-2) + 2w linear forms occurring in the matrices X_1, X_2, ...X_d are F-linearly independent. Our main result is a randomized reconstruction algorithm for full rank ABPs: Given blackbox access to an m-variate polynomial f of degree at most m, the algorithm outputs a full rank ABP computing f if such an ABP exists, or outputs \u27no full rank ABP exists\u27 (with high probability). The running time of the algorithm is polynomial in m and b, where b is the bit length of the coefficients of f. The algorithm works even if X_k is a w_{k-1} x w_k matrix (with w_0 = w_d = 1), and v = (w_1, ..., w_{d-1}) is unknown. The result is obtained by designing a randomized polynomial time equivalence test for the family of iterated matrix multiplication polynomial IMM_{v,d}, the (1,1)-th entry of a product of d rectangular symbolic matrices whose dimensions are according to v in N^{d-1}. At its core, the algorithm exploits a connection between the irreducible invariant subspaces of the Lie algebra of the group of symmetries of a polynomial f that is equivalent to IMM_{v,d} and the \u27layer spaces\u27 of a full rank ABP computing f. This connection also helps determine the group of symmetries of IMM_{v,d} and show that IMM_{v,d} is characterized by its group of symmetries

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Complete Derandomization of Identity Testing and Reconstruction of Read-Once Formulas

    Get PDF
    In this paper we study the identity testing problem of arithmetic read-once formulas (ROF) and some related models. A read-once formula is formula (a circuit whose underlying graph is a tree) in which the operations are {+,x} and such that every input variable labels at most one leaf. We obtain the first polynomial-time deterministic identity testing algorithm that operates in the black-box setting for read-once formulas, as well as some other related models. As an application, we obtain the first polynomial-time deterministic reconstruction algorithm for such formulas. Our results are obtained by improving and extending the analysis of the algorithm of [Shpilka-Volkovich, 2015

    Randomized Polynomial-Time Equivalence Between Determinant and Trace-IMM Equivalence Tests

    Get PDF
    Equivalence testing for a polynomial family {g_m} over a field F is the following problem: Given black-box access to an n-variate polynomial f(x), where n is the number of variables in g_m, check if there exists an A in GL(n,F) such that f(x) = g_m(Ax). If yes, then output such an A. The complexity of equivalence testing has been studied for a number of important polynomial families, including the determinant (Det) and the two popular variants of the iterated matrix multiplication polynomial: IMM_{w,d} (the (1,1) entry of the product of d many w ×\times w symbolic matrices) and Tr-IMM_{w,d} (the trace of the product of d many w ×\times w symbolic matrices). The families Det, IMM and Tr-IMM are VBP-complete, and so, in this sense, they have the same complexity. But, do they have the same equivalence testing complexity? We show that the answer is 'yes' for Det and Tr-IMM (modulo the use of randomness). The result is obtained by connecting the two problems via another well-studied problem called the full matrix algebra isomorphism problem (FMAI). In particular, we prove the following: 1. Testing equivalence of polynomials to Tr-IMM_{w,d}, for d\geq 3 and w\geq 2, is randomized polynomial-time Turing reducible to testing equivalence of polynomials to Det_w, the determinant of the w ×\times w matrix of formal variables. (Here, d need not be a constant.) 2. FMAI is randomized polynomial-time Turing reducible to equivalence testing (in fact, to tensor isomorphism testing) for the family of matrix multiplication tensors {Tr-IMM_{w,3}}. These in conjunction with the randomized poly-time reduction from determinant equivalence testing to FMAI [Garg,Gupta,Kayal,Saha19], imply that FMAI, equivalence testing for Tr-IMM and for Det, and the 33-tensor isomorphism problem for the family of matrix multiplication tensors are randomized poly-time equivalent under Turing reductions.Comment: 36 pages, 2 figure

    Hitting Sets for Orbits of Circuit Classes and Polynomial Families

    Get PDF
    The orbit of an n-variate polynomial f(?) over a field ? is the set {f(A?+?) : A ? GL(n,?) and ? ? ??}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials computable by several natural and well-studied circuit classes and polynomial families. In particular, we give quasi-polynomial time hitting sets for the orbits of: 1) Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-polynomial time hitting sets for the orbits of the elementary symmetric polynomials. 2) Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial time hitting set for the orbits of the family {IMM_{3,d}}_{d ? ?}, which is complete for arithmetic formulas. 3) Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the sum-product polynomials. 4) Polynomials computable by occur-once formulas

    Learning Generalized Depth Three Arithmetic Circuits in the Non-Degenerate Case

    Get PDF
    corecore