8,766 research outputs found

    Reconstruction of Binary Functions and Shapes from Incomplete Frequency Information

    Full text link
    The characterization of a binary function by partial frequency information is considered. We show that it is possible to reconstruct binary signals from incomplete frequency measurements via the solution of a simple linear optimization problem. We further prove that if a binary function is spatially structured (e.g. a general black-white image or an indicator function of a shape), then it can be recovered from very few low frequency measurements in general. These results would lead to efficient methods of sensing, characterizing and recovering a binary signal or a shape as well as other applications like deconvolution of binary functions blurred by a low-pass filter. Numerical results are provided to demonstrate the theoretical arguments.Comment: IEEE Transactions on Information Theory, 201

    Geometric reconstruction methods for electron tomography

    Get PDF
    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and nonlinear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180180^\circ tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire

    Reconstruction of algebraic-exponential data from moments

    Full text link
    Let GG be a bounded open subset of Euclidean space with real algebraic boundary Γ\Gamma. Under the assumption that the degree dd of Γ\Gamma is given, and the power moments of the Lebesgue measure on GG are known up to order 3d3d, we describe an algorithmic procedure for obtaining a polynomial vanishing on Γ\Gamma. The particular case of semi-algebraic sets defined by a single polynomial inequality raises an intriguing question related to the finite determinateness of the full moment sequence. The more general case of a measure with density equal to the exponential of a polynomial is treated in parallel. Our approach relies on Stokes theorem and simple Hankel-type matrix identities

    Semantic 3D Reconstruction with Finite Element Bases

    Full text link
    We propose a novel framework for the discretisation of multi-label problems on arbitrary, continuous domains. Our work bridges the gap between general FEM discretisations, and labeling problems that arise in a variety of computer vision tasks, including for instance those derived from the generalised Potts model. Starting from the popular formulation of labeling as a convex relaxation by functional lifting, we show that FEM discretisation is valid for the most general case, where the regulariser is anisotropic and non-metric. While our findings are generic and applicable to different vision problems, we demonstrate their practical implementation in the context of semantic 3D reconstruction, where such regularisers have proved particularly beneficial. The proposed FEM approach leads to a smaller memory footprint as well as faster computation, and it constitutes a very simple way to enable variable, adaptive resolution within the same model

    Non-Oscillatory Hierarchical Reconstruction for Central and Finite Volume Schemes

    Get PDF
    This is the continuation of the paper "central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction" by the same authors. The hierarchical reconstruction introduced therein is applied to central schemes on overlapping cells and to nite volume schemes on non-staggered grids. This takes a new nite volume approach for approximating non-smooth solutions. A critical step for high order nite volume schemes is to reconstruct a nonoscillatory high degree polynomial approximation in each cell out of nearby cell averages. In the paper this procedure is accomplished in two steps: first to reconstruct a high degree polynomial in each cell by using e.g., a central reconstruction, which is easy to do despite the fact that the reconstructed polynomial could be oscillatory; then to apply the hierarchical reconstruction to remove the spurious oscillations while maintaining the high resolution. All numerical computations for systems of conservation laws are performed without characteristic decomposition. In particular, we demonstrate that this new approach can generate essentially non-oscillatory solutions even for 5th order schemes without characteristic decomposition.The research of Y. Liu was supported in part by NSF grant DMS-0511815. The research of C.-W. Shu was supported in part by the Chinese Academy of Sciences while this author was visiting the University of Science and Technology of China (grant 2004-1-8) and the Institute of Computational Mathematics and Scienti c/Engineering Computing. Additional support was provided by ARO grant W911NF-04-1-0291 and NSF grant DMS-0510345. The research of E. Tadmor was supported in part by NSF grant 04-07704 and ONR grant N00014-91-J-1076. The research of M. Zhang was supported in part by the Chinese Academy of Sciences grant 2004-1-8

    Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information

    Full text link
    This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f \in \C^N and a randomly chosen set of frequencies Ω\Omega of mean size τN\tau N. Is it possible to reconstruct ff from the partial knowledge of its Fourier coefficients on the set Ω\Omega? A typical result of this paper is as follows: for each M>0M > 0, suppose that ff obeys # \{t, f(t) \neq 0 \} \le \alpha(M) \cdot (\log N)^{-1} \cdot # \Omega, then with probability at least 1O(NM)1-O(N^{-M}), ff can be reconstructed exactly as the solution to the 1\ell_1 minimization problem mingt=0N1g(t),s.t.g^(ω)=f^(ω)for allωΩ. \min_g \sum_{t = 0}^{N-1} |g(t)|, \quad \text{s.t.} \hat g(\omega) = \hat f(\omega) \text{for all} \omega \in \Omega. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for α\alpha which depends on the desired probability of success; except for the logarithmic factor, the condition on the size of the support is sharp. The methodology extends to a variety of other setups and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one or two-dimensional) object from incomplete frequency samples--provided that the number of jumps (discontinuities) obeys the condition above--by minimizing other convex functionals such as the total-variation of ff

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Simple Approximations of Semialgebraic Sets and their Applications to Control

    Full text link
    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even non-connected), which renders very difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrect-angles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly non-convex approximations , based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encounter in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Two main applications of the proposed approach are considered. The first one aims at reconstruction/approximation of sets from a finite number of samples. In the second one, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples

    Compact Central WENO Schemes for Multidimensional Conservation Laws

    Full text link
    We present a new third-order central scheme for approximating solutions of systems of conservation laws in one and two space dimensions. In the spirit of Godunov-type schemes,our method is based on reconstructing a piecewise-polynomial interpolant from cell-averages which is then advanced exactly in time. In the reconstruction step, we introduce a new third-order as a convex combination of interpolants based on different stencils. The heart of the matter is that one of these interpolants is taken as an arbitrary quadratic polynomial and the weights of the convex combination are set as to obtain third-order accuracy in smooth regions. The embedded mechanism in the WENO-like schemes guarantees that in regions with discontinuities or large gradients, there is an automatic switch to a one-sided second-order reconstruction, which prevents the creation of spurious oscillations. In the one-dimensional case, our new third order scheme is based on an extremely compact point stencil. Analogous compactness is retained in more space dimensions. The accuracy, robustness and high-resolution properties of our scheme are demonstrated in a variety of one and two dimensional problems.Comment: 24 pages, 5 figure
    corecore