8,578 research outputs found

    Sampling of graph signals via randomized local aggregations

    Get PDF
    Sampling of signals defined over the nodes of a graph is one of the crucial problems in graph signal processing. While in classical signal processing sampling is a well defined operation, when we consider a graph signal many new challenges arise and defining an efficient sampling strategy is not straightforward. Recently, several works have addressed this problem. The most common techniques select a subset of nodes to reconstruct the entire signal. However, such methods often require the knowledge of the signal support and the computation of the sparsity basis before sampling. Instead, in this paper we propose a new approach to this issue. We introduce a novel technique that combines localized sampling with compressed sensing. We first choose a subset of nodes and then, for each node of the subset, we compute random linear combinations of signal coefficients localized at the node itself and its neighborhood. The proposed method provides theoretical guarantees in terms of reconstruction and stability to noise for any graph and any orthonormal basis, even when the support is not known.Comment: IEEE Transactions on Signal and Information Processing over Networks, 201

    Coupling geometry on binary bipartite networks: hypotheses testing on pattern geometry and nestedness

    Full text link
    Upon a matrix representation of a binary bipartite network, via the permutation invariance, a coupling geometry is computed to approximate the minimum energy macrostate of a network's system. Such a macrostate is supposed to constitute the intrinsic structures of the system, so that the coupling geometry should be taken as information contents, or even the nonparametric minimum sufficient statistics of the network data. Then pertinent null and alternative hypotheses, such as nestedness, are to be formulated according to the macrostate. That is, any efficient testing statistic needs to be a function of this coupling geometry. These conceptual architectures and mechanisms are by and large still missing in community ecology literature, and rendered misconceptions prevalent in this research area. Here the algorithmically computed coupling geometry is shown consisting of deterministic multiscale block patterns, which are framed by two marginal ultrametric trees on row and column axes, and stochastic uniform randomness within each block found on the finest scale. Functionally a series of increasingly larger ensembles of matrix mimicries is derived by conforming to the multiscale block configurations. Here matrix mimicking is meant to be subject to constraints of row and column sums sequences. Based on such a series of ensembles, a profile of distributions becomes a natural device for checking the validity of testing statistics or structural indexes. An energy based index is used for testing whether network data indeed contains structural geometry. A new version block-based nestedness index is also proposed. Its validity is checked and compared with the existing ones. A computing paradigm, called Data Mechanics, and its application on one real data network are illustrated throughout the developments and discussions in this paper
    • …
    corecore