61 research outputs found

    On the accuracy of solving confluent Prony systems

    Full text link
    In this paper we consider several nonlinear systems of algebraic equations which can be called "Prony-type". These systems arise in various reconstruction problems in several branches of theoretical and applied mathematics, such as frequency estimation and nonlinear Fourier inversion. Consequently, the question of stability of solution with respect to errors in the right-hand side becomes critical for the success of any particular application. We investigate the question of "maximal possible accuracy" of solving Prony-type systems, putting stress on the "local" behavior which approximates situations with low absolute measurement error. The accuracy estimates are formulated in very simple geometric terms, shedding some light on the structure of the problem. Numerical tests suggest that "global" solution techniques such as Prony's algorithm and ESPRIT method are suboptimal when compared to this theoretical "best local" behavior

    Complete Algebraic Reconstruction of Piecewise-Smooth Functions from Fourier Data

    Full text link
    In this paper we provide a reconstruction algorithm for piecewise-smooth functions with a-priori known smoothness and number of discontinuities, from their Fourier coefficients, posessing the maximal possible asymptotic rate of convergence -- including the positions of the discontinuities and the pointwise values of the function. This algorithm is a modification of our earlier method, which is in turn based on the algebraic method of K.Eckhoff proposed in the 1990s. The key ingredient of the new algorithm is to use a different set of Eckhoff's equations for reconstructing the location of each discontinuity. Instead of consecutive Fourier samples, we propose to use a "decimated" set which is evenly spread throughout the spectrum

    Decimated generalized Prony systems

    Full text link
    We continue studying robustness of solving algebraic systems of Prony type (also known as the exponential fitting systems), which appear prominently in many areas of mathematics, in particular modern "sub-Nyquist" sampling theories. We show that by considering these systems at arithmetic progressions (or "decimating" them), one can achieve better performance in the presence of noise. We also show that the corresponding lower bounds are closely related to well-known estimates, obtained for similar problems but in different contexts

    Sparse Modelling and Multi-exponential Analysis

    Get PDF
    The research fields of harmonic analysis, approximation theory and computer algebra are seemingly different domains and are studied by seemingly separated research communities. However, all of these are connected to each other in many ways. The connection between harmonic analysis and approximation theory is not accidental: several constructions among which wavelets and Fourier series, provide major insights into central problems in approximation theory. And the intimate connection between approximation theory and computer algebra exists even longer: polynomial interpolation is a long-studied and important problem in both symbolic and numeric computing, in the former to counter expression swell and in the latter to construct a simple data model. A common underlying problem statement in many applications is that of determining the number of components, and for each component the value of the frequency, damping factor, amplitude and phase in a multi-exponential model. It occurs, for instance, in magnetic resonance and infrared spectroscopy, vibration analysis, seismic data analysis, electronic odour recognition, keystroke recognition, nuclear science, music signal processing, transient detection, motor fault diagnosis, electrophysiology, drug clearance monitoring and glucose tolerance testing, to name just a few. The general technique of multi-exponential modeling is closely related to what is commonly known as the Padé-Laplace method in approximation theory, and the technique of sparse interpolation in the field of computer algebra. The problem statement is also solved using a stochastic perturbation method in harmonic analysis. The problem of multi-exponential modeling is an inverse problem and therefore may be severely ill-posed, depending on the relative location of the frequencies and phases. Besides the reliability of the estimated parameters, the sparsity of the multi-exponential representation has become important. A representation is called sparse if it is a combination of only a few elements instead of all available generating elements. In sparse interpolation, the aim is to determine all the parameters from only a small amount of data samples, and with a complexity proportional to the number of terms in the representation. Despite the close connections between these fields, there is a clear lack of communication in the scientific literature. The aim of this seminar is to bring researchers together from the three mentioned fields, with scientists from the varied application domains.Output Type: Meeting Repor

    Algebraic Fourier reconstruction of piecewise smooth functions

    Full text link
    Accurate reconstruction of piecewise-smooth functions from a finite number of Fourier coefficients is an important problem in various applications. The inherent inaccuracy, in particular the Gibbs phenomenon, is being intensively investigated during the last decades. Several nonlinear reconstruction methods have been proposed, and it is by now well-established that the "classical" convergence order can be completely restored up to the discontinuities. Still, the maximal accuracy of determining the positions of these discontinuities remains an open question. In this paper we prove that the locations of the jumps (and subsequently the pointwise values of the function) can be reconstructed with at least "half the classical accuracy". In particular, we develop a constructive approximation procedure which, given the first kk Fourier coefficients of a piecewise-C2d+1C^{2d+1} function, recovers the locations of the jumps with accuracy ∼k−(d+2)\sim k^{-(d+2)}, and the values of the function between the jumps with accuracy ∼k−(d+1)\sim k^{-(d+1)} (similar estimates are obtained for the associated jump magnitudes). A key ingredient of the algorithm is to start with the case of a single discontinuity, where a modified version of one of the existing algebraic methods (due to K.Eckhoff) may be applied. It turns out that the additional orders of smoothness produce a highly correlated error terms in the Fourier coefficients, which eventually cancel out in the corresponding algebraic equations. To handle more than one jump, we propose to apply a localization procedure via a convolution in the Fourier domain

    Geometry and Singularities of the Prony mapping

    Full text link
    Prony mapping provides the global solution of the Prony system of equations Σi=1nAixik=mk, k=0,1,...,2n−1. \Sigma_{i=1}^{n}A_{i}x_{i}^{k}=m_{k},\ k=0,1,...,2n-1. This system appears in numerous theoretical and applied problems arising in Signal Reconstruction. The simplest example is the problem of reconstruction of linear combination of δ\delta-functions of the form g(x)=∑i=1naiδ(x−xi)g(x)=\sum_{i=1}^{n}a_{i}\delta(x-x_{i}), with the unknown parameters $a_{i},\ x_{i},\ i=1,...,n,fromthe"momentmeasurements" from the "moment measurements" m_{k}=\int x^{k}g(x)dx.GlobalsolutionofthePronysystem,i.e.inversionofthePronymapping,encountersseveraltypesofsingularities.Oneofthemostimportantonesisacollisionofsomeofthepoints Global solution of the Prony system, i.e. inversion of the Prony mapping, encounters several types of singularities. One of the most important ones is a collision of some of the points x_{i}.$ The investigation of this type of singularities has been started in \cite{yom2009Singularities} where the role of finite differences was demonstrated. In the present paper we study this and other types of singularities of the Prony mapping, and describe its global geometry. We show, in particular, close connections of the Prony mapping with the "Vieta mapping" expressing the coefficients of a polynomial through its roots, and with hyperbolic polynomials and "Vandermonde mapping" studied by V. Arnold.Comment: arXiv admin note: text overlap with arXiv:1301.118

    The L1-Potts functional for robust jump-sparse reconstruction

    Full text link
    We investigate the non-smooth and non-convex L1L^1-Potts functional in discrete and continuous time. We show Γ\Gamma-convergence of discrete L1L^1-Potts functionals towards their continuous counterpart and obtain a convergence statement for the corresponding minimizers as the discretization gets finer. For the discrete L1L^1-Potts problem, we introduce an O(n2)O(n^2) time and O(n)O(n) space algorithm to compute an exact minimizer. We apply L1L^1-Potts minimization to the problem of recovering piecewise constant signals from noisy measurements f.f. It turns out that the L1L^1-Potts functional has a quite interesting blind deconvolution property. In fact, we show that mildly blurred jump-sparse signals are reconstructed by minimizing the L1L^1-Potts functional. Furthermore, for strongly blurred signals and known blurring operator, we derive an iterative reconstruction algorithm

    Setting the cornerstone for the IMRPhenomX family of models for gravitational waves from compact binaries: The dominant harmonic for non-precessing quasi-circular black holes

    Full text link
    In this paper we present IMRPhenomXAS, a thorough overhaul of the IMRPhenomD [1,2] waveform model, which describes the dominant l=2, ∣m∣=2l=2, \:| m | = 2 spherical harmonic mode of non-precessing coalescing black holes in terms of piecewise closed form expressions in the frequency domain. Improvements include in particular the accurate treatment of unequal spin effects, and the inclusion of extreme mass ratio waveforms. IMRPhenomD has previously been extended to approximately include spin precession [3] and subdominant spherical harmonics [4], and with its extensions it has become a standard tool in gravitational wave parameter estimation. Improved extensions of IMRPhenomXAS are discussed in companion papers [5,6].Comment: 29 pages. 20 figures. Comments and feedback welcome! This paper corresponds to LIGO DCC P200001
    • …
    corecore