4,430 research outputs found

    Objects Reconstruction By Compressive Sensing from Single-pixel Registrations Using DMD

    Get PDF
    Compressive sensing allows to reconstruct information from a number of sparse signals. Use of digital micromirror device (DMD) between object and single-pixel detector planes is example of sparse signals registration technique. Detection of illumination from the objects by a single-pixel detector using a DMD was modeled. Grayscale, binary and color object images were used as objects. By compressed sensing images obtained under various recording conditions were reconstructed. Obtained results were analyzed. Reconstruction quality estimations and processing times are given. Keywords: compressed sensing, single-pixel imaging, digital micromirror device, image quality

    Compressive Sensing for Spectroscopy and Polarimetry

    Full text link
    We demonstrate through numerical simulations with real data the feasibility of using compressive sensing techniques for the acquisition of spectro-polarimetric data. This allows us to combine the measurement and the compression process into one consistent framework. Signals are recovered thanks to a sparse reconstruction scheme from projections of the signal of interest onto appropriately chosen vectors, typically noise-like vectors. The compressibility properties of spectral lines are analyzed in detail. The results shown in this paper demonstrate that, thanks to the compressibility properties of spectral lines, it is feasible to reconstruct the signals using only a small fraction of the information that is measured nowadays. We investigate in depth the quality of the reconstruction as a function of the amount of data measured and the influence of noise. This change of paradigm also allows us to define new instrumental strategies and to propose modifications to existing instruments in order to take advantage of compressive sensing techniques.Comment: 11 pages, 9 figures, accepted for publication in A&

    Feedback Acquisition and Reconstruction of Spectrum-Sparse Signals by Predictive Level Comparisons

    Full text link
    In this letter, we propose a sparsity promoting feedback acquisition and reconstruction scheme for sensing, encoding and subsequent reconstruction of spectrally sparse signals. In the proposed scheme, the spectral components are estimated utilizing a sparsity-promoting, sliding-window algorithm in a feedback loop. Utilizing the estimated spectral components, a level signal is predicted and sign measurements of the prediction error are acquired. The sparsity promoting algorithm can then estimate the spectral components iteratively from the sign measurements. Unlike many batch-based Compressive Sensing (CS) algorithms, our proposed algorithm gradually estimates and follows slow changes in the sparse components utilizing a sliding-window technique. We also consider the scenario in which possible flipping errors in the sign bits propagate along iterations (due to the feedback loop) during reconstruction. We propose an iterative error correction algorithm to cope with this error propagation phenomenon considering a binary-sparse occurrence model on the error sequence. Simulation results show effective performance of the proposed scheme in comparison with the literature

    Compressively Sensed Image Recognition

    Full text link
    Compressive Sensing (CS) theory asserts that sparse signal reconstruction is possible from a small number of linear measurements. Although CS enables low-cost linear sampling, it requires non-linear and costly reconstruction. Recent literature works show that compressive image classification is possible in CS domain without reconstruction of the signal. In this work, we introduce a DCT base method that extracts binary discriminative features directly from CS measurements. These CS measurements can be obtained by using (i) a random or a pseudo-random measurement matrix, or (ii) a measurement matrix whose elements are learned from the training data to optimize the given classification task. We further introduce feature fusion by concatenating Bag of Words (BoW) representation of our binary features with one of the two state-of-the-art CNN-based feature vectors. We show that our fused feature outperforms the state-of-the-art in both cases.Comment: 6 pages, submitted/accepted, EUVIP 201
    corecore