7 research outputs found

    Reconstruction of interfaces from the elastic farfield measurements using CGO solutions

    Full text link
    In this work, we are concerned with the inverse scattering by interfaces for the linearized and isotropic elastic model at a fixed frequency. First, we derive complex geometrical optic solutions with linear or spherical phases having a computable dominant part and an HαH^\alpha-decaying remainder term with α<3\alpha <3, where HαH^{\alpha} is the classical Sobolev space. Second, based on these properties, we estimate the convex hull as well as non convex parts of the interface using the farfields of only one of the two reflected body waves (pressure waves or shear waves) as measurements. The results are given for both the impenetrable obstacles, with traction boundary conditions, and the penetrable obstacles. In the analysis, we require the surfaces of the obstacles to be Lipschitz regular and, for the penetrable obstacles, the Lam\'e coefficients to be measurable and bounded with the usual jump conditions across the interface.Comment: 32 page

    Reconstructing obstacles using CGO solutions for the biharmonic equation

    Full text link
    In this article, we study an inverse problem for detecting unknown obstacle by the enclosure method using the Dirichlet to Neumann map as measurements. We justify the method for the impenetrable obstacle case involving the biharmonic equation. We use complex geometrical optics solutions with logarithmic phase to reconstruct some non-convex part of the obstacle. The proof is based on the global LpL^p-estimates for the gradient and Laplacian of the solutions of the biharmonic equation for pp near 22

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest
    corecore