1,345 research outputs found

    AUTOMATIC PERFORMANCE LEVEL ASSESSMENT IN MINIMALLY INVASIVE SURGERY USING COORDINATED SENSORS AND COMPOSITE METRICS

    Get PDF
    Skills assessment in Minimally Invasive Surgery (MIS) has been a challenge for training centers for a long time. The emerging maturity of camera-based systems has the potential to transform problems into solutions in many different areas, including MIS. The current evaluation techniques for assessing the performance of surgeons and trainees are direct observation, global assessments, and checklists. These techniques are mostly subjective and can, therefore, involve a margin of bias. The current automated approaches are all implemented using mechanical or electromagnetic sensors, which suffer limitations and influence the surgeon’s motion. Thus, evaluating the skills of the MIS surgeons and trainees objectively has become an increasing concern. In this work, we integrate and coordinate multiple camera sensors to assess the performance of MIS trainees and surgeons. This study aims at developing an objective data-driven assessment that takes advantage of multiple coordinated sensors. The technical framework for the study is a synchronized network of sensors that captures large sets of measures from the training environment. The measures are then, processed to produce a reliable set of individual and composed metrics, coordinated in time, that suggest patterns of skill development. The sensors are non-invasive, real-time, and coordinated over many cues such as, eye movement, external shots of body and instruments, and internal shots of the operative field. The platform is validated by a case study of 17 subjects and 70 sessions. The results show that the platform output is highly accurate and reliable in detecting patterns of skills development and predicting the skill level of the trainees

    Human skill capturing and modelling using wearable devices

    Get PDF
    Industrial robots are delivering more and more manipulation services in manufacturing. However, when the task is complex, it is difficult to programme a robot to fulfil all the requirements because even a relatively simple task such as a peg-in-hole insertion contains many uncertainties, e.g. clearance, initial grasping position and insertion path. Humans, on the other hand, can deal with these variations using their vision and haptic feedback. Although humans can adapt to uncertainties easily, most of the time, the skilled based performances that relate to their tacit knowledge cannot be easily articulated. Even though the automation solution may not fully imitate human motion since some of them are not necessary, it would be useful if the skill based performance from a human could be firstly interpreted and modelled, which will then allow it to be transferred to the robot. This thesis aims to reduce robot programming efforts significantly by developing a methodology to capture, model and transfer the manual manufacturing skills from a human demonstrator to the robot. Recently, Learning from Demonstration (LfD) is gaining interest as a framework to transfer skills from human teacher to robot using probability encoding approaches to model observations and state transition uncertainties. In close or actual contact manipulation tasks, it is difficult to reliabley record the state-action examples without interfering with the human senses and activities. Therefore, wearable sensors are investigated as a promising device to record the state-action examples without restricting the human experts during the skilled execution of their tasks. Firstly to track human motions accurately and reliably in a defined 3-dimensional workspace, a hybrid system of Vicon and IMUs is proposed to compensate for the known limitations of the individual system. The data fusion method was able to overcome occlusion and frame flipping problems in the two camera Vicon setup and the drifting problem associated with the IMUs. The results indicated that occlusion and frame flipping problems associated with Vicon can be mitigated by using the IMU measurements. Furthermore, the proposed method improves the Mean Square Error (MSE) tracking accuracy range from 0.8Ëš to 6.4Ëš compared with the IMU only method. Secondly, to record haptic feedback from a teacher without physically obstructing their interactions with the workpiece, wearable surface electromyography (sEMG) armbands were used as an indirect method to indicate contact feedback during manual manipulations. A muscle-force model using a Time Delayed Neural Network (TDNN) was built to map the sEMG signals to the known contact force. The results indicated that the model was capable of estimating the force from the sEMG armbands in the applications of interest, namely in peg-in-hole and beater winding tasks, with MSE of 2.75N and 0.18N respectively. Finally, given the force estimation and the motion trajectories, a Hidden Markov Model (HMM) based approach was utilised as a state recognition method to encode and generalise the spatial and temporal information of the skilled executions. This method would allow a more representative control policy to be derived. A modified Gaussian Mixture Regression (GMR) method was then applied to enable motions reproduction by using the learned state-action policy. To simplify the validation procedure, instead of using the robot, additional demonstrations from the teacher were used to verify the reproduction performance of the policy, by assuming human teacher and robot learner are physical identical systems. The results confirmed the generalisation capability of the HMM model across a number of demonstrations from different subjects; and the reproduced motions from GMR were acceptable in these additional tests. The proposed methodology provides a framework for producing a state-action model from skilled demonstrations that can be translated into robot kinematics and joint states for the robot to execute. The implication to industry is reduced efforts and time in programming the robots for applications where human skilled performances are required to cope robustly with various uncertainties during tasks execution

    INSPIRE Newsletter Fall 2018

    Get PDF
    https://scholarsmine.mst.edu/inspire-newsletters/1003/thumbnail.jp

    One-Shot Transfer of Affordance Regions? AffCorrs!

    Get PDF
    In this work, we tackle one-shot visual search of object parts. Given a single reference image of an object with annotated affordance regions, we segment semantically corresponding parts within a target scene. We propose AffCorrs, an unsupervised model that combines the properties of pre-trained DINO-ViT's image descriptors and cyclic correspondences. We use AffCorrs to find corresponding affordances both for intra- and inter-class one-shot part segmentation. This task is more difficult than supervised alternatives, but enables future work such as learning affordances via imitation and assisted teleoperation.Comment: Published in Conference on Robot Learning, 2022 For code and dataset, refer to https://sites.google.com/view/affcorr
    • …
    corecore