1,694 research outputs found

    Automatic detection of lung nodules in CT datasets based on stable 3D mass–spring models

    Get PDF
    We propose a computer-aided detection (CAD) system which can detect small-sized (from 3 mm) pulmonary nodules in spiral CT scans. A pulmonary nodule is a small lesion in the lungs, round-shaped (parenchymal nodule) or worm-shaped (juxtapleural nodule). Both kinds of lesions have a radio-density greater than lung parenchyma, thus appearing white on the images. Lung nodules might indicate a lung cancer and their early stage detection arguably improves the patient survival rate. CT is considered to be the most accurate imaging modality for nodule detection. However, the large amount of data per examination makes the full analysis difficult, leading to omission of nodules by the radiologist. We developed an advanced computerized method for the automatic detection of internal and juxtapleural nodules on low-dose and thin-slice lung CT scan. This method consists of an initial selection of nodule candidates list, the segmentation of each candidate nodule and the classification of the features computed for each segmented nodule candidate.The presented CAD system is aimed to reduce the number of omissions and to decrease the radiologist scan examination time. Our system locates with the same scheme both internal and juxtapleural nodules. For a correct volume segmentation of the lung parenchyma, the system uses a Region Growing (RG) algorithm and an opening process for including the juxtapleural nodules. The segmentation and the extraction of the suspected nodular lesions from CT images by a lung CAD system constitutes a hard task. In order to solve this key problem, we use a new Stable 3D Mass–Spring Model (MSM) combined with a spline curves reconstruction process. Our model represents concurrently the characteristic gray value range, the directed contour information as well as shape knowledge, which leads to a much more robust and efficient segmentation process. For distinguishing the real nodules among nodule candidates, an additional classification step is applied; furthermore, a neural network is applied to reduce the false positives (FPs) after a double-threshold cut. The system performance was tested on a set of 84 scans made available by the Lung Image Database Consortium (LIDC) annotated by four expert radiologists. The detection rate of the system is 97% with 6.1 FPs/CT. A reduction to 2.5 FPs/CT is achieved at 88% sensitivity. We presented a new 3D segmentation technique for lung nodules in CT datasets, using deformable MSMs. The result is a efficient segmentation process able to converge, identifying the shape of the generic ROI, after a few iterations. Our suitable results show that the use of the 3D AC model and the feature analysis based FPs reduction process constitutes an accurate approach to the segmentation and the classification of lung nodules

    Facial soft tissue segmentation

    Get PDF
    The importance of the face for socio-ecological interaction is the cause for a high demand on any surgical intervention on the facial musculo-skeletal system. Bones and soft-tissues are of major importance for any facial surgical treatment to guarantee an optimal, functional and aesthetical result. For this reason, surgeons want to pre-operatively plan, simulate and predict the outcome of the surgery allowing for shorter operation times and improved quality. Accurate simulation requires exact segmentation knowledge of the facial tissues. Thus semi-automatic segmentation techniques are required. This thesis proposes semi-automatic methods for segmentation of the facial soft-tissues, such as muscles, skin and fat, from CT and MRI datasets, using a Markov Random Fields (MRF) framework. Due to image noise, artifacts, weak edges and multiple objects of similar appearance in close proximity, it is difficult to segment the object of interest by using image information alone. Segmentations would leak at weak edges into neighboring structures that have a similar intensity profile. To overcome this problem, additional shape knowledge is incorporated in the energy function which can then be minimized using Graph-Cuts (GC). Incremental approaches by incorporating additional prior shape knowledge are presented. The proposed approaches are not object specific and can be applied to segment any class of objects be that anatomical or non-anatomical from medical or non-medical image datasets, whenever a statistical model is present. In the first approach a 3D mean shape template is used as shape prior, which is integrated into the MRF based energy function. Here, the shape knowledge is encoded into the data and the smoothness terms of the energy function that constrains the segmented parts to a reasonable shape. In the second approach, to improve handling of shape variations naturally found in the population, the fixed shape template is replaced by a more robust 3D statistical shape model based on Probabilistic Principal Component Analysis (PPCA). The advantages of using the Probabilistic PCA are that it allows reconstructing the optimal shape and computing the remaining variance of the statistical model from partial information. By using an iterative method, the statistical shape model is then refined using image based cues to get a better fitting of the statistical model to the patient's muscle anatomy. These image cues are based on the segmented muscle, edge information and intensity likelihood of the muscle. Here, a linear shape update mechanism is used to fit the statistical model to the image based cues. In the third approach, the shape refinement step is further improved by using a non-linear shape update mechanism where vertices of the 3D mesh of the statistical model incur the non-linear penalty depending on the remaining variability of the vertex. The non-linear shape update mechanism provides a more accurate shape update and helps in a finer shape fitting of the statistical model to the image based cues in areas where the shape variability is high. Finally, a unified approach is presented to segment the relevant facial muscles and the remaining facial soft-tissues (skin and fat). One soft-tissue layer is removed at a time such as the head and non-head regions followed by the skin. In the next step, bones are removed from the dataset, followed by the separation of the brain and non-brain regions as well as the removal of air cavities. Afterwards, facial fat is segmented using the standard Graph-Cuts approach. After separating the important anatomical structures, finally, a 3D fixed shape template mesh of the facial muscles is used to segment the relevant facial muscles. The proposed methods are tested on the challenging example of segmenting the masseter muscle. The datasets were noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. dental fillings and dental implants. Qualitative and quantitative experimental results show that by incorporating prior shape knowledge leaking can be effectively constrained to obtain better segmentation results

    Development of an Atlas-Based Segmentation of Cranial Nerves Using Shape-Aware Discrete Deformable Models for Neurosurgical Planning and Simulation

    Get PDF
    Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as the loss of eyesight or hearing and facial paralysis. Consequently, it is of great importance to clearly delineate cranial nerves in medical images for avoidance in the planning of neurosurgical procedures and for targeting in the treatment of cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that will be used to segment the cranial nerves from patient image data. The atlas will be created from high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. Each of the cranial nerves will be modeled using its centerline and radius information where the centerline is estimated in a semi-automatic approach by finding a shortest path between two user-defined end points. The cranial nerve atlas is then made more robust by integrating a Statistical Shape Model so that the atlas can identify and segment nerves from images characterized by artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has important benefits to the neurosurgical community

    Computer simulations in stroke prevention : design tools and strategies towards virtual procedure planning

    Get PDF

    Vascular remodeling after endovascular treatment: quantitative analysis of medical images with a focus on aorta

    Get PDF
    In the last years, the convergence of advanced imaging techniques and endovascular procedures has revolutionized the practice of vascular surgery. However, regardless the anatomical district, several complications still occur after endovascular treatment and the impact of endovascular repair on vessel morphology remains unclear. Starting from this background, the aim of this thesis is to ll the gaps in the eld of vessel remodeling after endovascular procedure. Main focus of the work will be the repair of the aorta and, in particular thoracic and thoracoabdominal treatments. Furthermore an investigation of the impact of endovascular repair on femoro-popliteal arterial segment will be reported in the present work. Analyses of medical images will been conducted to extract anatomical geometric features and to compare the changes in morphology before treatment and during follow-up. After illustrating in detail the aims and the outline of the dissertation in Chapter 1, Chapter 2 will concern the anatomy and the physiology of the aorta along with the main aortic pathologies and the related surgical treatments. Subsequently, an overview of the medical image techniques for segmentation and vessel geometric quantication will be provided. Chapter 3 will introduce the concept of remodeling of the aorta after endovascular procedure. In particular, two types of aortic remodeling will be considered. On one side remodeling can be seen as the shrinkage of the aneurysmal sac or false lumen thrombosis. On the other side, aortic remodeling could be seen as the changes in the aortic morphology following endograft placement which could lead to complications. Chapter 4 will illustrate a study regarding the analysis of medical images to measure the geometrical changes in the pathological aorta during follow-up in patients with thoracoabdominal aortic aneurysms treated with endovascular procedure using a novel uncovered device, the Cardiatis Multilayer Flow Modulator. Chapter 5 will focus on the geometrical remodeling of the aortic arch and descending aorta in patients who underwent hybrid arch treatment to treat thoracic aneurysms. The goal of the work is to develop a pipeline for the processing of pre-operative and post-operative Computed Tomography images in order to detect the changes in the aortic arch physiological curvature due to endograft insertion. Chapter 6 will focuse on the use of 3D printing technology as valuable tool to support patient's follow-up. In particular, we report a case of a patient originally treated with endovascular procedure for type B aortic dissection and which experimented several complications during follow-up. 3D printing technology is used to show the remodeling of the aortic vasculature during time. Chapter 7 will concern patient-specic nite element simulations of aortic endovascular procedure. In particular, starting from a clinical case where complication developed during followup, the predictive value of computational simulations will be shown. Chapter 8 will illustrate a study concerning the evaluation of morphological changes of the femoro-popliteal arterial segment due to limb exion in patients undergoing endovascular treatment of popliteal artery aneurysms

    Machine learning and reduced order modelling for the simulation of braided stent deployment

    Get PDF
    Endoluminal reconstruction using flow diverters represents a novel paradigm for the minimally invasive treatment of intracranial aneurysms. The configuration assumed by these very dense braided stents once deployed within the parent vessel is not easily predictable and medical volumetric images alone may be insufficient to plan the treatment satisfactorily. Therefore, here we propose a fast and accurate machine learning and reduced order modelling framework, based on finite element simulations, to assist practitioners in the planning and interventional stages. It consists of a first classification step to determine a priori whether a simulation will be successful (good conformity between stent and vessel) or not from a clinical perspective, followed by a regression step that provides an approximated solution of the deployed stent configuration. The latter is achieved using a non-intrusive reduced order modelling scheme that combines the proper orthogonal decomposition algorithm and Gaussian process regression. The workflow was validated on an idealised intracranial artery with a saccular aneurysm and the effect of six geometrical and surgical parameters on the outcome of stent deployment was studied. The two-step workflow allows the classification of deployment conditions with up to 95% accuracy and real-time prediction of the stent deployed configuration with an average prediction error never greater than the spatial resolution of 3D rotational angiography (0.15 mm). These results are promising as they demonstrate the ability of these techniques to achieve simulations within a few milliseconds while retaining the mechanical realism and predictability of the stent deployed configuration

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society
    • …
    corecore