3,403 research outputs found

    Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment

    Get PDF
    Nowadays, the increasing computation power of commercial grade processors has actively led to a vast spreading of image-based reconstruction software as well as its application in different disciplines. As a result, new frontiers regarding the use of photogrammetry in a vast range of investigation activities are being explored. This paper investigates the implementation of fisheye lenses in non-classical survey activities along with the related problematics. Fisheye lenses are outstanding because of their large field of view. This characteristic alone can be a game changer in reducing the amount of data required, thus speeding up the photogrammetric process when needed. Although they come at a cost, field of view (FOV), speed and manoeuvrability are key to the success of those optics as shown by two of the presented case studies: the survey of a very narrow spiral staircase located in the Duomo di Milano and the survey of a very narrow hypogea structure in Rome. A third case study, which deals with low-cost sensors, shows the metric evaluation of a commercial spherical camera equipped with fisheye lenses

    Photogrammetry for 3D Reconstruction in SOLIDWORKS and its Applications in Industry

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Close range, image based photogrammetry and LIDAR laser scanning technique are commonly utilized methodologies to snap real objects.3D models of already existing model or parts can be reconstructed by laser scanning and photogrammetry. These 3D models can be useful in applications like quality inspection, reverse engineering. With these techniques, they have their merits and limitations. Though laser scanners have higher accuracy, they require higher initial investment. Close-range photogrammetry is known for its simplicity, versatility and e ective detection of complex surfaces and 3D measurement of parts. But photogrammetry techniques can be initiated with comparatively much lower initial cost with acceptable accuracy. Currently, many industries are using photogrammetry for reverse engineering, quality inspection purposes. But, for photogrammetric object reconstruction, they are using di erent softwares. Industrial researchers are using commercial/open source codes for reconstruction and another stand-alone software for reverse engineering and mesh deviation analysis. So the problem statement here for this thesis is to integrate Photogrammetry, reverse engineering and deviation analysis to make one state-of-the-art work ow. xx The objectives of this thesis are as follows: 1. Comparative study between available source codes and identify suitable and stable code for integration; understand the photogrammetry methodology of that particular code. 2. To create a taskpane add-in using API for Integration of selected photogrammetry methodology and facilitate methodology with parameters. 3. To demonstrate the photogrammetric work ow followed by a reverse engineering case studies to showcase the potential of integration. 4. Parametric study for number of images vs accuracy 5. Comparison of Scan results, photogrammetry results with actual CAD dat

    Performance of Photogrammetry-Based Makeshift 3D Scanning System for Geometrical Object in Reverse Engineering

    Get PDF
    A three-dimension (3D) scanner is one of the important tools for digital reproduction of physical objects in reverse engineering. In some cases, a makeshift 3D scanner is needed immediately, such as for emergency spare parts reproduction. Thus, this research aims to investigate the feasibility of a low-cost makeshift 3D scanner using a mobile phone and the photogrammetry method in reconstructing digital 3D models of geometrical objects. A focus is given to the dimension accuracy of the reconstructed 3D models, which have been reproduced using images taken by a mobile phone, in comparison with the actual dimension of the scanned test pieces. To do so, four types of actual geometrical test pieces with dimension from 5 to 175 mm had been fabricated using CNC machine. 3D models of each test pieces had been developed using the photogrammetry method and compared with those developed using an industrial-grade high-end 3D scanner. It was found that mobile photogrammetry achieved an average accuracy of 97.2%, with minimum and maximum values of 83.3% and 99.9%, respectively. Geometrical dimensions less than 10 mm tend to have lower accuracy, while it was the opposite for dimensions over 150 mm. Furthermore, the scanning limit for either method was found to be a surface with a small tilting angle (less than 3 degrees). Nevertheless, photogrammetry method in combination with a mobile phone has the potential to be utilized as an alternative of a makeshift 3D scanning system with sufficient accuracy using commonly available tools

    Performance of Photogrammetry-Based Makeshift 3D Scanning System for Geometrical Object in Reverse Engineering

    Get PDF
    A three-dimension (3D) scanner is one of the important tools for digital reproduction of physical objects in reverse engineering. In some cases, a makeshift 3D scanner is needed immediately, such as for emergency spare parts reproduction. Thus, this research aims to investigate the feasibility of a low-cost makeshift 3D scanner using a mobile phone and the photogrammetry method in reconstructing digital 3D models of geometrical objects. A focus is given to the dimension accuracy of the reconstructed 3D models, which have been reproduced using images taken by a mobile phone, in comparison with the actual dimension of the scanned test pieces. To do so, four types of actual geometrical test pieces with dimension from 5 to 175 mm had been fabricated using CNC machine. 3D models of each test pieces had been developed using the photogrammetry method and compared with those developed using an industrial-grade high-end 3D scanner. It was found that mobile photogrammetry achieved an average accuracy of 97.2%, with minimum and maximum values of 83.3% and 99.9%, respectively. Geometrical dimensions less than 10 mm tend to have lower accuracy, while it was the opposite for dimensions over 150 mm. Furthermore, the scanning limit for either method was found to be a surface with a small tilting angle (less than 3 degrees). Nevertheless, photogrammetry method in combination with a mobile phone has the potential to be utilized as an alternative of a makeshift 3D scanning system with sufficient accuracy using commonly available tools

    State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    Get PDF
    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications

    Scan to BIM for 3D reconstruction of the papal basilica of saint Francis in Assisi In Italy

    Get PDF
    The historical building heritage, present in the most of Italian cities centres, is, as part of the construction sector, a working potential, but unfortunately it requires planning of more complex and problematic interventions. However, policies to support on the existing interventions, together with a growing sensitivity for the recovery of assets, determine the need to implement specific studies and to analyse the specific problems of each site. The purpose of this paper is to illustrate the methodology and the results obtained from integrated laser scanning activity in order to have precious architectural information useful not only from the cultural heritage point of view but also to construct more operative and powerful tools, such as BIM (Building Information Modelling) aimed to the management of this cultural heritage. The Papal Basilica and the Sacred Convent of Saint Francis in Assisi in Italy are, in fact, characterized by unique and complex peculiarities, which require a detailed knowledge of the sites themselves to ensure visitor’s security and safety. For such a project, we have to take in account all the people and personnel normally present in the site, visitors with disabilities and finally the needs for cultural heritage preservation and protection. This aim can be reached using integrated systems and new technologies, such as Internet of Everything (IoE), capable of connecting people, things (smart sensors, devices and actuators; mobile terminals; wearable devices; etc.), data/information/knowledge and processes to reach the desired goals. The IoE system must implement and support an Integrated Multidisciplinary Model for Security and Safety Management (IMMSSM) for the specific context, using a multidisciplinary approach

    Non-contact Reverse Engineering Modeling for Additive Manufacturing of Down Scaled Cultural Artefacts

    Get PDF
    Abstract In recent years, reverse engineering has achieved a relevant role in the cultural heritage field. The availability of 3D digital models of artefacts opens the door to a new era of cultural heritage: virtual museum creation, artefact cataloguing, conservation, planning and simulation of restoration, monitoring of artefacts subjected to environmental degradation, virtual reconstruction of damaged or missing parts, reproduction of replicas, etc. In this paper, two different non-contact reverse engineering scanning systems were utilized for 3D data acquisition of a cultural heritage artefact. The digital data acquisition and processing procedures of the scanned geometry have been illustrated and compared to evaluate the performance of both systems in terms of data acquisition time, processing time, reconstruction precision and final model quality. Finally, additive manufacturing technologies were applied to reconstruct a down scaled copy of the artefact

    Computer Vision Tools for 3D Modelling in Archaeology

    Get PDF
    In archaeological Cultural Heritage study 3D modelling has become a very useful process to obtain indispensable data for documentation and visualization. Nowadays the continuous request to achieve photorealistic 3D models has led to testing different techniques and methodologies to speed up both data acquisition and the data processing phase. There are many examples of surveys conducted with the use of range-based and image-based techniques, but, in the last few years, the scientific research has been increasingly moving towards automatic procedures using Computer Vision approach to reduce time during data processing. Computer Vision approach offers a great opportunity for archaeological survey since it can be very easily used by existing Computer Vision interfaces such as 3D web services and open source or low cost software. The aim of this work is to evaluate the performance offered by Computer Vision interfaces for 3D survey of archaeological ruins using some 3D web-service tools and a low cost software like PhotoScan package. Some tests have been performed to analyze the geometric accuracy of 3D models obtained by 3D web-service tools and PhotoScan package through the comparison with a 3D model achieved by laser scanning survey.Dept. of Civil, Environmental, Aerospace and Materials Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Ital

    Vision metrology and Structure from Motion for archaeological heritage 3D reconstruction: A Case Study of various Roman mosaics

    Get PDF
    Vision metrology and computer vision can be successfully used for archaeological heritage 3D reconstruction in very high uncertainty 3D measurement projects. Of those archaeological objects requiring very accurate measurements (<1 mm), ancient mosaics comprise some of the most important. The aim of this paper is to assess the photogrammetric/computer vision approach in a vision metrology context as part of a 3D mosaics survey. In order to evaluate the optimal photogrammetric/computer vision workflow in this work, three different surveys were performed on three mosaics of different sizes and locations. Two of these are stored at the Antonino Salinas Regional Archaeological Museum in Palermo (Italy) and the other is located at the Baglio Anselmi Regional Archaeological Museum in Marsala (Italy). The mosaics survey was undertaken in order to obtain a very detailed 3D model and a full-scale ortho-image (scale 1:1), which would be useful for documentation and restoration processes. The research involved an evaluation of the potential and the related issues of the photogrammetric/computer vision approach for 3D mosaic documentation, particularly regarding the issue of camera calibration

    cost effective quality assessment in industrial parts manufacturing via optical acquisition

    Get PDF
    Abstract We tackle the problem of dimensional verification via optical acquisition systems in the context of industrial manufacturing processes. Optical methods for quality inspection play a crucial part in the transition process to industry 4.0 and, despite the lack of international standardization, several solutions are available to industries that need to provide dimensional verification to their customers. Unfortunately most of these solutions are still economically unavailable to the majority of small or medium companies. In this paper we present an optical system based on low-cost components and we demonstrate that it provides useful and reliable information in quality inspection procedures
    • 

    corecore