1,559 research outputs found

    Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Full text link
    Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-)composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1) decomposing the underlying graph of the hybrid system into subgraphs, (2) computing multiple local Lyapunov functions for the subgraphs, and finally (3) composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment

    Get PDF
    We study multi-frequency transitions in the transient dynamics of a viscously damped dispersive finite rod with an essentially nonlinear end attachment. The attachment consists of a small mass connected to the rod by means of an essentially nonlinear stiffness in parallel to a viscous damper. First, the periodic orbits of the underlying hamiltonian system with no damping are computed, and depicted in a frequency–energy plot (FEP). This representation enables one to clearly distinguish between the different types of periodic motions, forming back bone curves and subharmonic tongues. Then the damped dynamics of the system is computed; the rod and attachment responses are initially analyzed by the numerical Morlet wavelet transform (WT), and then by the empirical mode decomposition (EMD) or Hilbert–Huang transform (HTT), whereby, the time series are decomposed in terms of intrinsic mode functions (IMFs) at different characteristic time scales (or, equivalently, frequency scales). Comparisons of the evolutions of the instantaneous frequencies of the IMFs to the WT spectra of the time series enables one to identify the dominant IMFs of the signals, as well as, the time scales at which the dominant dynamics evolve at different time windows of the responses; hence, it is possible to reconstruct complex transient responses as superposition of the dominant IMFs involving different time scales of the dynamical response. Moreover, by superimposing the WT spectra and the instantaneous frequencies of the IMFs to the FEPs of the underlying hamiltonian system, one is able to clearly identify the multi-scaled transitions that occur in the transient damped dynamics, and to interpret them as ‘jumps’ between different branches of periodic orbits of the underlying hamiltonian system. As a result, this work develops a physics-based, multi-scaled framework and provides the necessary computational tools for multi-scaled analysis of complex multi-frequency transitions of essentially nonlinear dynamical systems
    • …
    corecore