268,578 research outputs found

    Deep Networks for Compressed Image Sensing

    Full text link
    The compressed sensing (CS) theory has been successfully applied to image compression in the past few years as most image signals are sparse in a certain domain. Several CS reconstruction models have been recently proposed and obtained superior performance. However, there still exist two important challenges within the CS theory. The first one is how to design a sampling mechanism to achieve an optimal sampling efficiency, and the second one is how to perform the reconstruction to get the highest quality to achieve an optimal signal recovery. In this paper, we try to deal with these two problems with a deep network. First of all, we train a sampling matrix via the network training instead of using a traditional manually designed one, which is much appropriate for our deep network based reconstruct process. Then, we propose a deep network to recover the image, which imitates traditional compressed sensing reconstruction processes. Experimental results demonstrate that our deep networks based CS reconstruction method offers a very significant quality improvement compared against state of the art ones.Comment: This paper has been accepted by the IEEE International Conference on Multimedia and Expo (ICME) 201

    A Study on Image Reconfiguration Algorithm of Compressed Sensing

    Get PDF
    Compressed sensing theory is a subversion of the traditional theory. The theory obtains data sampling points while achieves data compression. The main content of this thesis is reconstruction algorithm. It’s the key of the compressed sensing theory, which directly determines the quality of reconstructed signal, reconstruction speed and application effect. In this paper, we have studied the theory of compressed sensing and the existing reconstruction algorithms, then choosing three algorithms (OMP, CoSaMP, StOMP) as the research. On the basis of summarizing the existing algorithms and models, we analyze the results such as PSNR, relative error, matching ratio and running time of them from image signal respectively. In the three reconstruction algorithms, OMP algorithm has the best accuracy for image reconstruction. The convergence speed of CoSaMP algorithm is faster than that of the OMP algorithm’s, but it depends on sparsity K quietly. StOMP algorithm on image reconstruction effect is the best, and the convergence speed is also the fastest

    Improved Compressive Sensing Of Natural Scenes Using Localized Random Sampling

    Get PDF
    Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging

    Simultaneous use of Individual and Joint Regularization Terms in Compressive Sensing: Joint Reconstruction of Multi-Channel Multi-Contrast MRI Acquisitions

    Get PDF
    Purpose: A time-efficient strategy to acquire high-quality multi-contrast images is to reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause leakage of uncommon features among contrasts, compromising diagnostic utility. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Theory: Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. Methods: The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. Results: The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms. Conclusion: The proposed compressive sensing method performs fast reconstruction of multi-channel multi-contrast MRI data with improved image quality. It offers reliability against feature leakage in joint reconstructions, thereby holding great promise for clinical use.Comment: 13 pages, 13 figures. Submitted for possible publicatio
    corecore